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Preface to the German edition

The idea for writing this book crystallized from an interest in methods of short-wave asymp-
totics and symplectic geometry. Later followed a course about theoretical optics, which gave
me great pleasure. This pleasure turned out to be lasting, and so the present book arose from
several revisions and extensions of the original manuscript.

Indeed, there are many reasons to present the venerable and traditional field of optics in a
new form. The discovery of lasers, the steady progress of powerful data-processing systems,
and the development of new materials with unusual optical properties have all revolutionized
the field of optics.

Lasers are light sources of unprecedented intensity and coherence, without which such
new branches as nonlinear optics and holography would have been impossible. Computer
technology allows the processing of optical signals and the construction of diffractive optical
devices, which have already taken their place next to common lenses and mirrors. Glass-fiber
cables, compact disks, and simple holograms are proof that the products of the new kind of
optics have already entered our daily life.

However, not only have experimental physics and technology experienced rapid progress,
but also we have seen the development and application of new theoretical methods in optics:

The modern theory of nonlinear dynamical systems has found many applications in nonlin-
ear optics. Here we meet bifurcation and chaotic behavior as well as dispersion-free solutions
of nonlinear integrable systems.

The adoption of the concepts and methods from the theory of stochastic processes for the
description of fluctuating light wave fields turned out to be extremely fruitful. In this way,
stochastic optics became a new branch of theoretical optics; the notion of coherence found
a more profound formulation, and today applications for image processing and correlation
spectroscopy have become standard routines.

Progress in the theory of short-wave asymptotics within the framework of symplectic ge-
ometry not only led to an improvement of the WKB method and to a better understanding of
the quasi-classical limit of quantum mechanics, but “symplectic optics” also allows a deeper
insight into the geometrical structures of the realm between wave optics and ray optics, into
the nature of caustics, and into the theory of diffraction.

These overwhelming developments in the applications and the theory of optics have led
to a considerable number of publications in recent years. However, these presentations, of-
ten written in the form of an experimental textbook, either provide a summary of methods,
phenomena, and applications of modern optics, or they describe, in the form of a monograph,
special parts of experimental, applied, or theoretical optics.

Theoretical Optics. Hartmann Römer
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40429-5



X Preface to the German edition

The present book attempts a coherent and concise presentation of optics, emphasizing
the perspective of a theoretician. However, it is not meant to be a textbook on mathematical
physics, but tries instead to mediate among different positions:

For the experimentalist, the applied physicist, and the theoretician, this book aims to pro-
vide a unification and a deeper understanding of the theoretical background, and, for those
who are interested, a first access to the corresponding mathematical literature. The theoreti-
cally or mathematically inclined reader is introduced to the “applications” and the manifold
phenomena related to the theory of light. What, in my opinion, makes optics so particularly
attractive is that in this field the path between theory and phenomena is shorter and more
straightforward than in other physical areas.

In order to remain comprehensible for the above-mentioned group of readers, I have as-
sumed as little as possible previous knowledge. The book requires only basic knowledge about
Maxwell’s equations and the underlying elementary vector analysis, a certain familiarity with
the essential properties of Fourier transformations, and the simplest phenomena of the propa-
gation of waves and wave packets, in particular the notion of group velocity.

In short, this book pursues the following three aims:

• provision of a theoretical overview;

• theoretical extension and introduction to the fundamental mathematics;

• presentation and interpretation of many important optical phenomena.

A look at the table of contents reveals that, in particular, this third aim has not been neglected:
the description of manifold phenomena in crystal optics, nonlinear optics, geometrical optics,
diffraction theory, diffraction optics, as well as statistical optics and coherence optics will
provide this book with a solid frame.

Unfortunately, certain choices and limitation of the material turned out to be unavoidable. I
decided to include only a short presentation of those optical phenomena which depend mainly
on quantum theory or the particle picture of light. In particular, this refers to quantum optics
and the theory of lasers, as well as the interaction of light with matter, like the photoelectric ef-
fect, the Compton effect, pair creation and bremsstrahlung, and, finally, applications of optics
in atomic and molecular spectroscopy.

In this way, the presentation of the material in this book could be structured as a straight-
forward development of the content of Maxwell’s equations:

Chapter 1 contains some historical remarks, with an emphasis on the development of the
wave theory of light and the description of Newtonian optics.

Chapter 2 develops in a brief and concise form the electrodynamics of media and it is
shown how the influence of polarizable media can be taken into account by the introduction
of the additional fields D and H . We will describe the causality and passivity conditions of
media and their influence on the conductivity and susceptibilities.

The following four chapters are devoted to the propagation of waves in homogeneous but
not necessarily isotropic media. Chapter 3 serves as an illustrative introduction to the general
theory of wave propagation in elastic media; in particular, we will explain the notions of a
wave surface and a ray surface, which will turn out to be essential for the coming chapters.
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Chapter 4 summarizes the basic concepts of the theory of crystal optics. Among other
things, we will discuss double refraction, conical refraction, and reflection and refraction at
interfaces between homogeneous media.

Chapter 5 deals with the interesting phenomena related to electro-, magneto-, and elasto-
optical properties, while Chapter 6 is devoted to nonlinear optics. It contains a summary of the
most important nonlinear optical phenomena, the theory of nonlinear waves, and the coupling
of three waves. We will describe the phenomena of frequency doubling, parametric amplifi-
cation, self-focussing, momentum contraction, phase conjugation, wave conduction in glass
fibers, and optical solitons.

The following five chapters deal with the propagation of waves in isotropic but not nec-
essarily homogeneous media. In general, this is a very difficult problem, which includes,
amongst other things, the theory of most optical elements. The necessary tools will turn out
to be the short-wave asymptotics and the theory of diffraction. Although the presentation will
remain on an elementary level, we also want to provide the necessary foundations for the
advanced mathematical theories.

In Chapter 7, we describe the transition from wave optics to geometrical optics and develop
a formal analogy between classical mechanics and geometrical optics.

Chapter 8 is devoted to geometrical optics. Special emphasis is put on the presentation of
matrix methods and the relation to linear symplectic transformations. Additional subjects are
the impossibility of perfect optical instruments, and Seidel’s theory of aberrations.

Chapter 9 contains a general geometrical treatment of short-wave asymptotics, in particu-
lar a geometrical theory of caustics. In this context we will explain the notions of characteris-
tic equations, transport equations, focal points, Lagrangian submanifolds, and Maslow index.
There the interested reader will find a short introduction to symplectic geometry.

In Chapter 10, we will discuss the theory of diffraction, in particular the principles of
Huygens and Fresnel, Fraunhofer diffraction, and image processing in Fourier space. Two
sections at the end of this chapter contain an introduction to the theory of Morse families and
Fourier integral operators.

Chapter 11 describes briefly the foundations and applications of holography, a particularly
attractive branch of diffraction optics.

Chapter 12 concludes this book with a summarizing presentation of statistical optics. The
central subject is a description of the wave field by stochastic processes, which, in a natural
way, leads to the notions of the various correlation functions. As applications, we will explain
correlation spectroscopy, dynamical light scattering, speckle effect, and image processing by
filtering.

It is my sincere hope that this book will give the beginner a comprehensible introduction
to the subject of theoretical objects and, at the same time, will convey to the advanced reader
many interesting insights.

Finally, it is my pleasant duty to thank all those who have helped me, often essentially,
during work on this book: First of all I should like to thank the students who attended my
lectures. Their attention and interest has always been encouraging for me, and I owe them
thanks for many helpful suggestions. Furthermore, I am very grateful to former members of the
Institute for Theoretical Physics for their constructive criticism and comments, in particular
J. Barth, W. Bischoff, C. Emmrich, M. Forger, T. Filk, D. Giulini, P. Glößner, C. Kiefer,
M. Koch, A. Münnich, K. Nowak, H. Steger, and A. Winterhalder, as well as E. Binz from
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the University of Mannheim. C. Heinisch from Kaiserslautern has, with great patience, set the
manuscript in LATEX.

Two persons I should like to mention with special thanks: E. Meinrenken was one of the
attendees at my lectures. Later, he dealt intensively with the theory of short-wave asymptotics.
The final mathematical sections in chapters 9 and 10 owe much to the presentations in his
diploma thesis. Furthermore, he carefully looked through the preliminary versions of chapters
7 to 10. I am also grateful to G. Jerke from the VCH publishing company. His constant interest
in the development of this book, his personal efforts, and countless valuable suggestions went
far beyond what one can usually expect during such a book project. Finally, I should like
to thank the VCH publishing company, in particular R. Wengenmayr, for their pleasant and
confidential cooperation.

Freiburg, April 1994 Hartmann Römer



Preface to the English edition

With the appearance of the English edition, I am glad to see my book becoming accessible
for a wider public. On the other hand, being cut off from my mother tongue in a matter of
personal importance, I cannot conceal a feeling of alienation and loss of power. Fortunately,
the English edition provided an occasion for a substantial augmentation by four new chapters
on quantum optics, a subject of rapidly increasing fundamental and technical importance.

In the presentation of quantum optics, it is not my ambition to compete with available
comprehensive monographs on this subject. Rather, and in accordance with the spirit of this
book, I aim at a concise and coherent account, bringing out the basic structures in a clear and
conceptually (not necessarily mathematically) rigorous way.

Chapter 13 deals with the quantization of the electromagnetic field and with a description
of its quantum states, in particular coherent and squeezed states. For the theory of operators
on quantum states, I use the opportunity to introduce the notion of star products, one of the
central subjects of research in our group in Freiburg. I think that star products are a very useful
and simplifying tool in quantum optics, which should be more widely known.

Chapter 14 is concerned with the detection of light fields: homodyne detection, interfer-
ometry and photon count statistics.

Chapter 15 is devoted to the interaction of light and matter. It contains central subjects like
the Jaynes–Cumming model, three-state systems, the theory of the micromaser and the Paul
trap, and of forces enacted on matter by light.

In chapter 16, I give a brief introduction into the fascinating subject of testing basic fea-
tures of quantum theory by methods of quantum optics. “Gedanken” experiments have become
feasible in this field. Quantum computers are a particularly interesting emerging application.

It is my pleasant duty to thank those people who have helped me to realize this English
edition. In the first place I thank Thomas Filk, who not only translated the twelve chapters of
the German edition and did the typing of the whole book, but also contributed valuable advice.
Thanks are also due to the attendees at my lectures on quantum optics for their enthusiasm
and valuable feedback.

Very helpful contributions also came from Kerstin Kunze, who was responsible for the
exercises accompanying my course. She, and also Stefan Jansen and Svea Beiser, carefully
proofread the last four chapters. I had many useful conversations with Stefan Waldmann.
Finally, I would also like to thank my colleagues H. P. Helm, H. Reik and M. Weidemüller for
kind interest, encouragement and helpful suggestions.

Freiburg, April 2004 Hartmann Römer



1 A short survey of the history of optics

Until the beginning of the seventeenth century, our understanding of the nature and properties
of light evolved rather slowly, although, in contrast to electrical phenomena, for example,
optical phenomena are straightforward to observe.

Ever since ancient times we have known about the straight-line propagation of light, which
is most obvious in the shadows cast from a light source. From this observation, the ancient
Greeks already developed the concept of straight light rays. This idea, however, was intimately
entangled with the theory of “seeing rays”, which were emitted from the eyes and palpated,
with the help of light, visible objects like feelers.

Another well-known fact was the equality of the angles of incidence and reflection for
light rays, and Hero of Alexandria was able to attribute this law to the more general principle
of a shortest path for light. Common optical devices were the gnomon as well as plane and
curved mirrors and lenses. At least since ancient Roman times, magnifying glasses were in
use.

Concerning the nature of light, different concepts were put forward. The “atomists” fol-
lowing Democritus (about 460–371 BC) and his less well-known predecessor Leucippus
(about 480–??? BC) believed that all objects consisted of atoms traveling through empty space.
All changes could be attributed to the movements and rearrangements of atoms. In this view,
light rays were considered to be a flux of light particles traveling in straight lines and freely
through empty space and which could penetrate transparent bodies. The different types of
colors were explained by different shapes or sizes of these atoms of light. Later the Roman
Lucretius (about 96–55 BC) formulated a systematic summary of the atomistic viewpoint in
his savant poem “De Rerum Natura”.

In clear contrast to these ideas was the opinion of Aristotle (384–322 BC), which he for-
mulated in his treatments on the soul (“De Anima” II,7) and the senses (“De Sensu” III). For
ontological reasons the concept of empty space as an existing non-being was unacceptable for
Aristotle. For him, light was not a substance or body but a quality; to be more precise, the actu-
ality of the quality of the transparent. The mere potentiality of the transparent is darkness. The
transition from the potentially transparent to the actually transparent happens under the influ-
ence of fire or the shining bodies of Heaven. The primarily visible quality of objects is their
color. Colors are qualities which, like light, become actual in bodies that are not completely
transparent but only participate in the nature of transparency to a certain degree. Therefore, it
seems natural that Aristotle calls light the “color of the transparent”.

As is commonly known, the mainstream thinking in Europe did not follow the atomistic
view for many centuries. In particular, the simple and plausible color theory of Aristotle was
of far-reaching influence and initiated, amongst others, the color theory developed by Goethe.

Theoretical Optics. Hartmann Römer
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 1 A short survey of the history of optics

Throughout the Middle Ages, the atomistic philosophy was only known from discussions
among the Aristotelians and as an object of polemics for the Early Fathers. It was not until
1417, after Poggio Bracciolini (1380–1459) had recovered a hand-written document of Lu-
cretius, that a first-hand presentation of the atomistic ideas was available.

During the long era following the end of the ancient world up to the beginning of the
seventeenth century, the efforts for a better understanding of the nature of light saw but a few
highlights.

In the moslem Near East one of the outstanding scientists was Ibn al Haitham (963–1039),
in Europe known by the name Alhazen. He found that the assumption of Ptolemaeus (about
100–170) about the proportionality of the angles of incidence and reflection was an approx-
imation that only holds for small angles. Furthermore, he succeeded in giving a precise de-
scription of the functioning of the human eye.

Roger Bacon (1215–1294) knew quite well about the properties of lenses and concave
mirrors and is regarded as the inventor of the camera obscura. Even more important is the
invention of spectacles around 1299 by Salvino degli Armati from Florence. At the end of
this chapter, the reader will find a table of important names and dates related to the history of
optics.

The breakthrough in the seventeenth century was initiated by the invention of new opti-
cal instruments. In 1600 the Dutch maker of spectacles, Zacharias Janssen from Middelburg,
built the first microscope. This instrument was continuously improved during the seventeenth
century and allowed a glimpse into a world that remained out of reach for the naked eye.
The same holds for the telescope, which, according to most sources, was invented by the
Dutch Hans Lippershey around 1608. News of this discovery spread fast throughout Europe
and caused Galileo Galilei (1564–1642) in 1609 to construct his telescope. In 1611 Johannes
Kepler (1571–1630) published the drawings of his telescope using a convex lens ocular.

Finally, in 1621, Willebrord Snell (1591–1626) found the correct law of refraction and
thereby solved one of the fundamental problems in geometrical optics after more than 1500
years. Even Kepler had tried to attack this problem and failed. In its present form the law of
refraction was published by René Descartes (1596–1650) who, in 1644, derived it from his
bizarre theory of light, which we will discuss later. He also found the right explanation for
the rainbow. In 1657, Pierre de Fermat (1601–1665) derived the law of refraction from the
principle of least time, which assumed the propagation of light inside optically dense media
to be slower than outside.

After the discovery of the law of refraction, mathematicians like Carl Friedrich Gauss
(1777–1855), William Rowan Hamilton (1805–1865), and Ernst Abbe (1840–1905) took over
and continuously improved the theory of geometrical optics. Hamilton based his theory on
Fermat’s principle, and it was only later that he applied his methods to the realm of analytical
mechanics. During his lifetime it was in particular the discovery of conical refraction that
made him famous.

The scientifically very fruitful seventeenth century saw also the discovery of many funda-
mental optical phenomena: In his book “Physicomathesis de Lumine, Coloribus et Iride”,
which appeared in 1665 after his death, the Jesuit clergyman Francesco Maria Grimaldi
(1618–1663) described the phenomenon of refraction; double refraction was found in 1669
by Erasmus Bartholinus (1625–1698); and the phenomenon of polarization was discovered by
Christiaan Huygens (1629–1695), who described the effect in his “Traité de la Lumière” in
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1690. However, in contrast to the phenomenon of double refraction, he was not able to explain
it. Finally, we should emphasize Olaus Rømer (1644–1710), who in 1676 determined the ve-
locity of light from the delayed appearances of the eclipses of the moons of Jupiter during a
period of increasing distance between Jupiter and the Earth.

Concerning the understanding of the natures of light and color, three different concepts
competed during the seventeenth century. Still of great influence and part of the canonical
teaching at universities was the philosophy of Aristotle, which coined, for example, the ideas
of Kepler.

Others, like Robert Boyle (1627–1691), followed the ancient atomistic view and vehe-
mently propagated a corpuscular theory of light. Boyle, for example, related the various colors
to different velocities of the light particles.

A third group, the so-called “plenists”, differed from the atomists in their objection to the
existence of empty space. For them, light was in some obscure way related to flows, vortices,
and waves; they assumed the global existence of a continuous, space-filling medium for the
propagation of an action. These ideas laid the foundations for the wave theory of light, which
later, in the nineteenth century, became the dominant view in science.

Because of its great influence on the philosophy of the seventeenth century, the plenistic
theory of Descartes is of special importance. Any form of corporeal substance is a “res ex-
tensa”, characterized by its principal property of extension and occupation of space. A physical
vacuum would be a contradiction in itself.

Descartes distinguished three types of matter, which differentiated from the primordial
homogeneous bulk substance: a very tiny, subtle matter that one may identify with an ether; a
so-called spherical matter consisting of small impenetrable spheres; and finally the third type
of bulk matter from which the large material bodies in our world are formed. All three forms
of matter fill space completely, and any action between material substances can be traced back
to a “mechanical origin”, which for Descartes consisted only of collisions or direct contacts.

According to Descartes, light constitutes an action of pressure exerted onto the spherical
matter by the subtle matter, which is in constant motion. Because the spheres are in direct
contact and of infinite rigidity, light propagates with infinite velocity. Refraction can produce
colored light, if the spheres of the second type of matter are set into rotation through a deflec-
tion of the propagation direction. From his model, Descartes was able to derive Snell’s law of
refraction. Descartes explained the planetary rotations about their own axes as well as around
the Sun “mechanically” as vortex-like movements of the subtle matter, which in turn would
carry along the third type of matter.

Descartes did not trust in the truth of sensations but was convinced that thinking and reason
were the only sources of reliable knowledge. The general influence of his program to math-
ematize the natural sciences was great. However, especially in England, people like Francis
Bacon and Isaac Newton objected to his way of gaining knowledge by pure speculations. His
mechanical models were considered to be artificial, lacking justification based on experience,
and without any power of explanation or prediction. On many occasions Newton emphasized
his disapproval of “hypotheses”, which to a large extent may be seen as his response to the
Cartesian philosophy.

In his “Physicomathesis”, Grimaldi comes much closer to a wave theory of light than
Descartes. He not only describes the phenomena of diffraction on small objects, including
color fringes and the brightening in the center of the shadow, but he also mentions the phe-
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nomenon of interference (although he did not use this word) behind two closely neighboring
apertures, and the colors appearing in the reflection of light from surfaces with densely spaced
grooves. He also observed deviations from straight-line propagation of light and called them
“diffractions”. Grimaldi compares the propagation of light with the floating of a fine liquid,
but he does not draw far-reaching conclusions from this picture. The long-winded, roundabout
style of his writing strongly diminished the influence of his work. Often the distinction of flow,
vortex formation, and real propagation of light waves is not obvious, but he makes the com-
parisons with spherically spreading water waves and the propagation of sound. He interprets
the variety of colors as the undulations of a fluid, which are as versatile as the handwriting of
different people.

It was Robert Hooke (1635–1703) who formulated a real wave theory of light. He consid-
ered light as the propagation of a longitudinal wave in an ether. In his “Micrographia” from
1665, he describes the appearance of color at thin films, and he seeks an explanation in the
reflection of light at both sides, the front as well as the back side of the film. As he and his
contemporaries were lacking the notion of interference, he was not able to complete this ex-
planation. The appearance of color in the refraction of light is explained by wave fronts, which
after refraction are no longer parallel to the direction of propagation. In general, colors were
described as modifications of white light.

In his “Traité de la Lumière”, Christiaan Huygens developed the well-known principle
now bearing his name, according to which at every point of space the passing light excites
elementary waves (or wavelets). Using this picture he derived a simple and convincing ex-
planation of Snell’s law of refraction, which to the present day is contained in almost every
school textbook. The most brilliant triumph of this model was the quantitative description of
double refraction in calcite by assuming spherically and ellipsoidally shaped wavelets.

Most surprisingly, Huygens model is not really a wave theory. His wavelets are rather to
be compared with wave fronts or shock waves, from which the resulting wave fronts may be
reconstructed as the envelope. They are not related to some kind of periodic motion.

In his Traité, he does not elaborate on the problem of colors, although his comments on
Newton’s color theory indicate his preference for a color theory based on two or three primary
colors.

We should now emphasize the contributions of Isaac Newton (1643–1724) who, for a long
time, eclipsed all other natural philosophers not only because of his deciphering of the laws
of motion and gravity but also for his contributions to the field of optics. Almost all lines of
developments enter and sometimes even interfere in his works on optics, and nowhere else are
the contradictory aspects of the wave and corpuscular theory of light more obvious than in his
person.

With full justification, Newton is generally considered to be the representative for the
corpuscular theory of light. In this aspect, he rather represented a minority of those scholars
who were involved in the progress of optics at this time. Newton has often been blamed that
under the pressure of his authority the breakthrough of the wave theory was delayed until the
nineteenth century. However, a deeper look reveals that such an oversimplified judgment of
Newton’s role is inappropriate.

Like his development of the infinitesimal calculus and theory of gravitation, one can trace
back the works of Newton on optics to his earlier years, in particular to the eminently fruitful
time between 1665 and 1667, which he spent in his birth town Woolsthorpe after the University
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of Cambridge had to be closed in the aftermath of the plague. Newton mainly published his
results related to optics during the first four decades of his life.

As is well known, the starting point of his investigations of prismatic colors was the prob-
lem of chromatic aberrations in lens telescopes. He was convinced that it was impossible to
correct the chromatic aberrations of lenses, which led him to the construction of a mirror
telescope. This brought him the Membership of the Royal Society.

In 1672 his revolutionary article “New Theory about Light and Colors” appeared in the
“Philosophical Transactions”, the publication organ of the Royal Society. In this article New-
ton reports in a concise but lively style about his famous experiments on the decomposition of
white light. His conclusion was that white light is composed of components of different colors
and refractivities. These components cannot be further decomposed by a prism and cannot be
modified by other means. However, it is possible to compose white light from these compo-
nents. The colors of bodies can be explained by their varying reflection or absorption of the
different colors contained in white light. His theory of an infinity of basic colors that cannot
be viewed as a modification of the original white light was considered as revolutionary and
led to fierce and controversial discussions.

Never again in his writings did Newton formulate his ideas as frankly and unprotected as
he did in those thirteen pages. In his later publications, in particular in his main works, Newton
preferred the unassailable but rigid form of a mathematical treatment with definitions, axioms,
and propositions.

Three reasons may have been responsible for this caution: First, Newton tried to avoid
scientific arguments, which he hated but with which he nevertheless saw himself confronted
all the time. His relationship with Robert Hooke, for instance, consisted of a decade-long
chain of wearing quarrels. Second, Newton had a general and constantly growing distrust
in argumentation of the Cartesian type. Third, his position on the interpretation of physical
phenomena often remained open because he himself could not make up his mind regarding a
final opinion.

However, in a series of papers and lectures presented to the Royal Society around 1675/76,
Newton cautiously commented on his view about the nature of light, emphasizing his aversion
to hypotheses and clearly distinguishing facts from explanations.

The most important physical content of this works lies in the description of Newton’s rings,
as they are called today. These are concentric colored rings that become visible when a slightly
curved convex lens is placed onto a plane glass plate. Only much later did it become clear that
these rings result from the interference of light waves that are reflected at the boundaries of the
thin layer of air between the two glasses. For the coming 130 years, the precision of Newton’s
observations was unparalleled; they later allowed the precise determination of the wavelengths
of different colors. In this context Newton even surpassed Hooke whose special field was the
color phenomena at thin layers.

From Newton’s explanations it seems obvious that at that time he considered the existence
of an ether, through which the waves could propagate, as very likely. “If I had to assume a
hypothesis as true,” he says, “it would be this one.” The ether is a medium with a large density
outside of material bodies but only a diluted density inside where it is displaced by other
forms of substance. The ether not only mediates the electric and magnetic forces but also the
excitations traveling in nerve fibers and – particularly surprising for Newton – the gravitation
between material bodies. As we shall see in a moment, the ether also has an influence on the
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propagation of light. In order to fulfill all these different functions, the ether was thought to be
a complicated mixture of several components.

Although the ether is able to vibrate, we should not, according to Newton’s opinion, iden-
tify the nature of light with these ether undulations. The reason Newton mentions this is that
for him the straight propagation of light is not compatible with a wave theory. Indeed, this was
a fundamental problem at a time when a mathematical treatment of wave theory, the principle
of interference, and, in particular, the method of Fourier analysis were not at hand. It was
only 150 years later that Fresnel found a way out of this dilemma using his method of zone
constructions.

Therefore, Newton saw himself forced to ascribe a corpuscular character to light. He ex-
plained the phenomena of refraction and total reflection by assuming that the light particles
were dragged into spatial areas of diluted ether. According to his opinion, the velocity of light
should be larger in transparent matter as compared to the ether between the bodies. In addition,
violet light should consist of smaller particles because they are easier to deviate and therefore
refracted more strongly. With these ideas, Newton opposed Fermat and Huygens.

When light particles traversed the interfaces between bodies or passed near such an inter-
face, they would trigger undulations of the ether “like a stone thrown into water”, and these
denser and thinner parts of the ether, which propagate faster than light itself, had somehow
to react back onto the motions of the light particles. Newton explicitly mentions the work of
Grimaldi and explains the colored borders and fringes when light is refracted at edges or small
objects as the interaction of light particles with excited ether waves.

This sophisticated theory of ether waves as a kind of “guiding waves” for light provided
a qualitative and quantitative explanation for Newton’s rings. Newton’s only assumption was
that the light particles, after hitting the interface, were either predominantly reflected or they
passed through the interface, depending on whether they had hit a density peak or a density
minimum of the excited ether waves. This also explained why light was sometimes reflected
and sometimes diffracted at interfaces. The radius of Newton’s rings allowed a precise de-
termination of the wavelengths of the ether waves that were triggered by light particles of
different colors.

Newton was well aware of the advantages inherent in the wave theory of light and he even
proposed to relate the wavelengths of the ether undulations with the color of light. He knew,
and he clearly states, that the color and dispersion phenomena of light as well as Newton’s
rings could be explained by both a wave theory and a corpuscular theory. As we have seen,
it was the problem of understanding the straight-line propagation of light that led Newton to
favor a corpuscular theory.

In 1704, almost 30 years later and one year after the death of Robert Hooke, Newton pub-
lished his extensive work on the nature of light in his book “Opticks”. The first Latin version
followed in 1706, and the second English edition in 1717. Compared to his earlier writings,
one finds characteristic changes in the form of representation as well as in his opinion.

For his “Opticks” he chooses the form of a mathematical treatment, like he did in the
“Principia” from 1687. However, in contrast to the “Principia”, he derives his results more
by induction, starting from the phenomena and proceeding to their mathematical description.
When Newton developed his theory of gravitation and experienced the sometimes nasty dis-
cussions about fundamental principles, his aversion to Cartesian-like explanations by hypothe-
ses grew. In his famous “Scholium Generale” at the end of the “Principia”, Newton refused
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to supplement a hypothetical interpretation for his action at a distance, which describes the
gravitational forces. The second book of the “Principia” is mainly devoted to a disproof of
Descartes’ vortex theory of the motion of planets. The ether itself appears as an, at best, un-
necessary auxiliary hypothesis, which he rather considers to be disproved by the observed
phenomena. Already the first sentence in “Opticks” reads: “It is not my intention to explain in
this book the properties of light by hypotheses, but only to state them and to confirm them by
calculation and experiment.”

For the interaction between light and matter, observed in the reflection, diffraction, and
refraction of light, he prefers a description “free of hypotheses” in terms of an action at a
distance between the particles of light and matter. A derivation of Snell’s laws of refraction,
assuming an attractive force between light and matter, is already contained in the fourteenth
section of part I of the “Principia”. Once more, the velocity of light must be larger inside a
medium than for the vacuum.

“Opticks” consists of three parts: Book I contains an extended and systematic descrip-
tion of Newton’s theory of colors, including his quantitative explanation for the colors of the
rainbow.

Book II is devoted to the colors appearing in thin layers and he tries to use this theory
also for an explanation of the colors of material bodies. The excellent observational data were
already contained in the treatments of 1675/76. The explanation of these phenomena by guid-
ing waves in the ether is replaced by a formal description, neutral with respect to hypothetical
interpretations: The theory of “fits”, as he called them, the tendencies for a light particle to
be reflected or to pass through an interface, is developed in propositions XII–XX of the sec-
ond book. For instance, in proposition XII one finds: “Each light ray, when passing through
a diffracting surface, acquires a certain property or disposition which reappears in the further
course of the ray in equal intervals and by which it easily passes through the next diffracting
surface, and is slightly reflected between each recurrence of this property.” Whether a light
ray is reflected or diffracted at an interface depends on the momentary disposition of easy
reflectibility or easy transmissivity. In proposition XIII Newton speculates that light might
acquire these changing dispositions already with its emission. From the radius of Newton’s
rings one can determine the recurrence intervals of these dispositions in air and water. For
an explanation of these dispositions, Newton considers a hypothesis neither as necessary nor
as proven, however, in proposition XII he mentions the model of ether undulations “for the
reader”, beginning with a characteristic remark: “Those who are not willing to accept a new
discovery unless it is explained by some hypothesis may assume, for the time being, that . . . .”
A description that is free of any hypotheses concerning the dispositions consists for Newton
in undulations that are produced in material substances by forces at a distance between light
and matter particles and then react onto the light.

In book III of “Opticks”, Newton describes his observations related to the refraction of
light at small objects and edges. This is followed by an appendix where Newton poses some
problems, which, in his opinion, are not yet sufficiently understood. He also includes general
comments on the nature of light, its interaction with matter, and also on subjects of natural
philosophy, which go far beyond the realm of optics. These famous “queries” allow a glimpse
into Newton’s personal thoughts, interpretations, and doubts. From the way he poses the ques-
tions, it is usually not difficult to deduce the answers that Newton favored.
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Newton’s view about these subjects was everything else but settled, which manifests itself
in the increasing number of queries added to each new edition, and by 1717 the edition of
“Opticks” contained 130 queries. The first questions aim at an interpretation of the phenomena
of reflection, refraction, and diffraction according to the ideas described above. Of special
interest are the questions from 25 to 31, which were first included in the edition of 1706.
The questions 25 and 26 describe double refraction of light in calcite. In this context Newton
explains the phenomenon of polarization. For an explanation, Newton assigns a third quality
to light, in addition to color and periodic dispositions, and which he calls the “sides” of a light
ray.

The “sides” should be considered as a kind of orientation of a light ray that is perpendicular
to the direction of propagation. A light ray hitting the surface of a calcite crystal may be
diffracted in an ordinary or an extraordinary way, depending on the orientations of the sides
relative to the crystal. A rotation by 90◦ around the direction of propagation will exchange
ordinary and extraordinary diffraction. Newton explains his ideas by pointing out that the
force between two magnets also depends on their relative orientation. His theory of sides
already contains many essential ingredients of today’s theory of polarization. However, with
respect to a quantitative description of the extraordinary diffraction at calcite, Huygens’ theory
of wavelets remained superior.

In questions 27 and 28 Newton makes a thorough effort to falsify the wave theory of light.
He emphasizes the straight-line propagation of light signals and compares it with the sound
of a cannon or a bell, which could be heard also behind a small hill. And he summarizes all
arguments disfavoring the existence of an ether. In question 29 he establishes his corpuscular
theory of light: differences in color correspond to differences in the size of light particles;
refraction, reflection, dispositions, and sides are explained by an action at a distance between
light and matter.

Newton’s enigmatic character reveals itself in that the 1717 edition of the “Opticks” con-
tains new questions 17 to 24, where his ether theory from 1675 and 1676 reappears, including
an ether hypothesis for gravitation, while at the same time the other questions rejecting and
disproving the ether hypothesis still remain.

People have sometimes tried to mark Newton as an early pioneer of quantum mechanics,
arguing with his aversion against hypotheses, his emphasis on the importance of observation,
and his way to use the wave theory and corpuscular theory of light side by side. These attempts
should be considered as inappropriate and unhistorical. But anyhow, Newton’s free and cau-
tious use of hypotheses differs much from the dogmatism of his successors, who certainly
retarded the development of optics during the eighteenth century.

Today, in quantum theory, the relationship between wave and corpuscular theory has found
a subtle solution in terms of complementarity. However, it would be wrong to consider the con-
troversies between the respective proponents of wave and corpuscular theory as superfluous.

First, even from today’s perspective we would use the wave picture for a proper description
of reflection, refraction, diffraction, and double refraction; second, the propagation mechanism
of light quanta, which is determined by absorption and re-emission, differs in many ways from
the propagation of light particles, which should be slower in vacuum than in a medium; and
third, the equation for the quantum field, which, within the framework of quantum electrody-
namics, describes both the electromagnetic waves and the photons, is a wave equation.
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With respect to the fundamentals of optics, nothing essential happened during the eigh-
teenth century. However, we should mention two practical achievements: first, the construc-
tion of achromatic lenses, which Newton considered to be impossible, first in 1733 by the
amateur Chester Moor Hall (1704–1770) and again in 1757 by John Dolland (1706–1761);
and second, the discovery of aberration by James Bradley (1692–1762) in 1725. Aberration
refers to the apparent change in the position of a star due to the movement of the Earth, and
it was considered to be a confirmation of the corpuscular theory of light, because it found a
simple and straightforward explanation within this framework.

The nineteenth century saw the second period of a rapid evolution of optics, at the end of
which the nature of light was understood to be a transverse electromagnetic wave phenome-
non. In 1801, the ingenious Thomas Young (1773–1829), who also contributed considerably
to the deciphering of the hieroglyphs by suggesting the identification of the “cartouches” or
“royal rings” around the kings’ names, formulated the principle of interference of waves and
explained, as an immediate application, the diffraction of light. Building on the work of New-
ton and his at that time still unsurpassed accuracy of measurements, Young proposed a wave
theoretic explanation of Newton’s rings together with a determination of the wavelengths of
light. In 1809 Etienne Louis Malus (1775–1812) discovered the polarization of light in the re-
flections at mirrors, which led to a small crisis for the wave theory of optics. His observations
led to the compelling conclusion that light, if really of wave-like character, must be transverse,
which seemed to contradict the prevailing opinion according to which the propagation of light
in a matter-free space was only possible for a longitudinal wave. For this reason even Malus
himself judged his discovery to be a confirmation of the corpuscular theory. It took another
eight years until Thomas Young, in 1817, ventured to interpret light as a transverse wave.

Essential progress in wave theory is due to Augustin Jean Fresnel (1788–1827). His zone
construction, published in 1818, solved the long-standing problem of explaining the straight-
line propagation of light. Together with Dominique Jean François Arago (1786–1853), he
showed in 1819 that two light rays with perpendicular polarization planes do not interfere.
Starting from a theory of transverse waves, not only was Fresnel able to derive the formulas
which today bear his name and which allow the exact determination of the intensities for the
reflected and refracted parts of light, but also he completed the subject of crystal optics as a
theory of propagating transverse waves in anisotropic crystals. Of similar importance is his
work on the theory of diffraction, which was further pursued by Joseph Fraunhofer (1787–
1826), whose formal concepts were finally completed by Gustav Robert Kirchhoff (1824–
1887). These successes of wave theory remained unmatched by any corpuscular theory of
light. One of the last and tenacious proponents of corpuscular light theory was Jean Baptiste
Biot (1774–1862). He looked for a mechanistic explanation of Newton’s fits in the form of
prolonged and rapidly rotating light particles, which could penetrate through a surface if they
hit the surface with their spiky heads, and which were reflected if they hit the surface with
their flat sides. The final decision in favor of wave theory was the measurement of the velocity
of light in water by Jean Bernard Léon Foucault (1819–1868), which in 1850 definitely proved
that the speed of light inside a medium is slower than in the vacuum.

Based on the preliminary work of Michael Faraday (1791–1867), James Clerk Maxwell
(1831–1879) derived his fundamental equations of electrodynamics, which imply the exis-
tence of transverse electromagnetic waves propagating with a fixed velocity, the velocity of
light. The final experimental detection of these waves by Heinrich Rudolf Hertz (1857–1894)
in 1888 made optics a branch of electrodynamics.
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The theory of electrons developed by Hendrik Antoon Lorentz (1853–1928) allowed the
explanation of optical properties of matter in terms of electromagnetic concepts. The deriva-
tion of Fresnel’s equations from electrodynamics is also due to Lorentz. In addition, we owe
him essential contributions to the solution of the ether problem.

The final coup de grâce for the notion of an ether in its traditional form came in 1905,
when Albert Einstein (1879–1955) formulated his theory of special relativity. The famous
experiment by Albert Abraham Michelson (1852–1931) and Edward Williams Morley (1838–
1923) did not reveal any measurable motion of the Earth with respect to the ether, as one
would have expected according to the ether hypothesis.

Just when the final victory of the wave theory of light seemed complete, Max Planck
(1858–1947) explained, in 1900, the spectral energy distribution of a black body using his
quantum hypothesis. In 1905 Albert Einstein (1879–1955) took up the concept of energy
quantization and applied it to the hitherto unexplained photoelectric effect. In his interpre-
tation, Einstein went far beyond the ideas of Planck in that he described light as consisting
of single energy quanta, so-called photons, thus assigning particle-like properties to light. The
development of quantum theory at the beginning of the twentieth century finally led to a deeper
understanding of the nature and the properties of light.

The discovery of the laser, the advance of the computer, the rapid development of holog-
raphy and diffractive optics, the development of new materials, in particular materials with
special nonlinear properties, as well as the sophistication and expansion of theoretical meth-
ods has led to a new revolution of optics during the past few decades. At present, optics can
be considered as a particularly strong and growing branch of physics.

Table 1.1: Important people and events for the evolution of optics.

Euclid “Katoptrik” (first scientific epos), general
(about 300 BC) ideas about optics

Ibn al Haitham
(AD 963–1039)

R. Bacon discovery of the camera obscura
(1214–1294)

S. degli Armati 1299 discovery of spectacles

Z. Janssen 1600 the first microscope

H. Lippershey 1608 construction of the first telescope
(1587–1619)

G. Galilei 1609 telescope
(1564–1642)

J. Kepler 1611 telescope
(1571–1630)
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Table 1.1: continued

W. Snell 1621 formulation of the law of refraction
(1591–1626)

R. Descartes 1637 “La Dioptrique”, theory of the rainbow,
(1596–1650) law of refraction

P. de Fermat 1657 derivation of the law of refraction, principle
(1609–1665) of temporally shortest path of light

F. Grimaldi 1665 “Physicomathesis de Lumine, Coloribus et Iride”,
(1618–1663) discovery of diffraction

E. Bartholinus 1670 discovery of double refraction
(1625–1698)

C. Huygens 1678/90 “Traité de la Lumière”, wavelets, explanation of
(1629–1695) double refraction, discovery of polarization

R. Hooke 1665 “Micrographia”, wave theory, colors of
(1635–1703) thin layers

I. Newton 1668 construction of the mirror telescope,
(1643–1727) 1672 “New Theory about Light and Colours”,

1675/76 lectures about Newton’s rings,
1704 “Opticks” (Latin 1706, 2nd English edn. 1717),

mirror telescope, theory of colors, component
theory of white light, colors of the rainbow,
Newton’s rings, polarization, diffraction,
corpuscular theory

O. Rømer 1676 measurement of the speed of light
(1644–1710)

J. Bradley 1725/28 stellar aberration of the light of fixed
(1692–1762) stars and its explanation

C. M. Hall 1733 construction of achromatic lenses
(1704–1770)

J. Dolland 1757 construction of achromatic lenses
(1706–1761)

F. W. Herschel 1800 discovery of infrared radiation
(1738–1822)
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Table 1.1: continued

J. W. Ritter 1801 discovery of ultraviolet radiation
(1776–1810)

W. H. Wollaston 1801 discovery of ultraviolet radiation
(1766–1828)

E. L. Malus 1809 polarization by reflection
(1775–1812)

D. Brewster 1815 Brewster’s angle
(1781–1858)

T. Young 1801 development of interferometry,
(1773–1829) 1817 interpretation of light as a transverse wave

C. F. Gauss geometrical optics
(1777–1855)

J. Fraunhofer 1814/15 Fraunhofer lines,
(1787–1826) 1821/23 development of diffraction theory

J. A. Fresnel 1818 Fresnel’s zone construction,
(1788–1827) 1819 Fresnel’s equations,

1821/22 development of diffraction theory
D. J. F. Arago polarization, color phenomena, interference
(1786–1853)

W. R. Hamilton geometrical optics, conical refraction
(1805–1865)

G. R. Kirchhoff 1859 spectral analysis, together with R. W. Bunsen,
(1824–1889) 1883 diffraction theory

R. W. Bunsen 1859 spectral analysis, together with G. R. Kirchhoff
(1811–1899)

H. Fizeau 1849 terrestrial measurement of velocity of light
(1819–1896)

J. B. L. Foucault 1850 measurement of velocity of light in media
(1819–1868)

H. von Helmholtz theory of aberrations of optical instruments
(1821–1894)
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Table 1.1: continued

E. Abbe theory of resolution of optical instruments
(1840–1905)

J. C. Maxwell 1862 Maxwell’s equations, fundamentals of
(1831–1879) electromagnetic light theory

L. G. Gouy phase change at caustics
(1854–1926)

A. Sommerfeld rigorous solution of diffraction problems
(1868–1951)

H. Hertz 1888 detection of electromagnetic waves
(1857–1894)

W. C. Röntgen 1895 X-rays
(1845–1923)

H. A. Lorentz electron theory of optical properties of matter
(1853–1928)

M. Planck 1900 light quanta
(1858–1947)

A. Einstein 1905 theory of photon effect, special relativity
(1879–1955)

A. A. Michelson 1880 interferometer, Michelson–Morley experiment
(1852–1931)

D. Gabor 1948 holography
(1900–1979)

T. H. Maiman 1960 laser
(1927– )

C. H. Townes 1964 Nobel prize for the development of lasers
(1915– )

A. M. Prochorow
(1922– )

N. G. Basow
(1916– )



2 The electrodynamics of continuous media

2.1 Maxwell’s equations

The complete classical theory of electromagnetic fields is contained in Maxwell’s equations.
Along with Lorentz’s equation for the electromagnetic force, they describe all the phenomena
arising from interactions between electromagnetic fields and matter as long as quantum effects
may be neglected. They also form the foundations for theoretical optics.

In a general form, independent of any given system of electromagnetic units, Maxwell’s
equations can be written in the form:

∇ · E =
ρ

ε0
, (2.1)

∇ × E = −κ
∂B

∂t
, (2.2)

∇ · B = 0, (2.3)

∇ × B = κµ0

(
j + ε0

∂E

∂t

)
. (2.4)

Here, E denotes the electric field vector (or electric field strength), B the magnetic induction,
ρ the electric charge density, and j the electric current density. The force per unit volume
acting on the electric charge density ρ and the electric current density j is given by the law for
the Lorentz force:

f = ρE + κj × B. (2.5)

The constants ε0, κ, and µ0 entering eqs. (2.1)–(2.18) can be understood in the following way.

• ε0 has to be present in eq. (2.4), because, taking the divergence of eq. (2.4) and using
eq. (2.1), one obtains

∂ρ

∂t
+ ∇ · B = 0. (2.6)

• The constants κ in eqs. (2.2) and (2.5) have to be identical in order to guarantee the
validity of the general law of induction. The induced tension in a conducting loop L is
proportional to the change

Φ =
d
dt

∫
L

df · B
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of the magnetic flux through the loop, and the change can be due either to a time variation
of the magnetic induction or to a deformation of the loop. In this latter case, the induced
tension is an effect of the Lorentz force.

• Looking at eqs. (2.1) and (2.5), we see that ε0 fixes the units of the electric charge, charge
density ρ, current density j, and electric field E.

• The unit of magnetic induction is either given via eq. (2.2) by fixing κ or via eq. (2.4) by
fixing µ0κ.

• This double determination of the unit of B implies that there must be a relation between
the constants ε0, µ0, and κ. Indeed, setting ρ ≡ 0 and j ≡ 0, taking the rotation of
eq. (2.2), and using eq. (2.4), one arrives at a wave equation:

κ2µ0ε0
∂2

∂t2
E − ∆E = 0. (2.7)

We see that

κ2ε0µ0 =
1
c2

, (2.8)

where c denotes the speed of light in vacuum; ε0 is called the vacuum permittivity and µ0

the magnetic permeability of vacuum.

In particular, we should mention two commonly used systems of units:

• The SI system, also called the MKSA system, for which

κ = 1, µ0 = 4π × 10−7 N
A2

, ε0 =
1

µ0c2
. (2.9)

• The Gaussian system, also called the MKS system, for which

κ =
1
c
, µ0 = 4π, ε0 =

1
4π

.

In this system, E and B have the same dimension.

Equations (2.1) and (2.4) contain the electric charge density and current density, which is why
they are referred to as the inhomogeneous Maxwell’s equations, while the other two are called
the homogeneous Maxwell’s equations.

Maxwell’s equations assume a slightly simpler form if we introduce two new fields, the
electric displacement density D and the magnetic field vector H :

D = ε0E,

H =
1
µ0

B.
(2.10)
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This leads to:

∇ · D = ρ, (2.11)

∇ × E = −κ
∂B

∂t
, (2.12)

∇ · B = 0, (2.13)

∇ × H = κ

(
j +

∂D

∂t

)
. (2.14)

The homogeneous equations remain unchanged, while the inhomogeneous equations now con-
tain the new fields D and H .

We shall see later that this form of Maxwell’s equations also remains valid when we look
at electrodynamics in continuous media. In this case, however, the fields E, B, ρ, and j
should be interpreted as quantities that are averaged (or smeared) over volumes that are small
compared to macroscopic scales but large compared to molecular scales. Furthermore, the
fields D and H will no longer be given by eq. (2.10).

Finally, we want to draw some helpful conclusions from Maxwell’s equations. Derivations
may be found in any textbook on electrodynamics.

1. The energy density ρE and the energy flux density S of the electromagnetic field are
given by

ρE =
ε0

2
E2 +

1
2µ0

B2 =
1
2

(E · D + B · H),

S =
1

κµ0
E × B =

1
κ

E × H .

(2.15)

2. The density ρP
i and the current density jP

ik of the ith component of the momentum of the
electromagnetic field may be expressed as

ρP
i = κε0εijkEjBk = κεijkDjBk, (2.16)

jP
ik =: −Tik = ε0

(
1
2
E2δik − EiEk

)
+

1
µ0

(
1
2
B2δik − BiBk

)
=

1
2
E · D δik − EiDk +

1
2
B · H δik − BiHk. (2.17)

3. The homogeneous equations (2.2) and (2.3) can be solved by introducing a scalar poten-
tial Φ and a vector potential A:

B = ∇ × A,

E = −∇Φ − κ
∂A

∂t
.

(2.18)
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For any function χ, the transformed potentials

A′ = A + ∇χ, Φ′ = Φ − κ
∂χ

∂t
(2.19)

define the same fields B and E. These gauge degrees of freedom may be used to impose
on A and Φ the Lorentz gauge condition:

∇ · A +
1

κc2

∂Φ
∂t

= 0. (2.20)

Inserting eq. (2.18) into the inhomogeneous Maxwell’s equations (2.1) and (2.4) yields

�Φ :=
(

1
c2

∂2

∂t2
− ∆

)
Φ =

ρ

ε0
,

�A :=
(

1
c2

∂2

∂t2
− ∆

)
A = κµ0j.

(2.21)

The retarded solutions to these equations are

Φ(t, x) =
1

4πε0

∫
d3x′ ρ(t − |x − x′|/c, x′)

|x − x|

=
1
ε0

∫
dt′ d3x′ Gret(t − t′, x − x′) ρ(t′, x′)

A(t, x) =
κµ0

4π

∫
d3x′ j(t − |x − x′|/c, x′)

|x − x|
= κµ0

∫
dt′ d3x′ Gret(t − t′, x − x′) j(t′, x′),

(2.22)

where

Gret =
1
4π

1
|x| δ

(
t − 1

c
|x|

)
(2.23)

is the retarded Green’s function for the wave operator �.

2.2 Molecular vs. macroscopic fields

The subject of optics is the investigation of the interactions between light and matter. However,
in bulk matter there always exist a huge number of charged particles. The number of particles
per cm3 ranges between roughly 6 × 1020 and 6 × 1023, depending on whether the matter
is in a gaseous or condensed state. Furthermore, due to the fast motion of the particles, the
electromagnetic fields vary strongly as a function of space and time. A microscopic descrip-
tion of these molecular fields seems hopeless. Any information processing system would be
cracked by the task of storing the data of 1020 particles. Furthermore, nobody could possibly
be interested in all these data, which is why such a description is even undesirable.
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On the other hand, what is observable and of general interest are the macroscopic fields
obtained by averaging the molecular fields over space-time regions with a space-like extension
of L and a time-like extension of T > L/c. Such averaging procedures eliminate the rapid
field fluctuations present on microscopic scales and lead to macroscopic fields that are eas-
ier to observe and easier to handle analytically. In general, spatial averaging already implies
averaging with respect to time-dependent fluctuations. The wavelengths of visible light are
centered around 5 × 10−5 cm. For L = 10−6 cm, a volume of V = L3 still contains between
103 and 106 particles. Hence, even for wavelengths corresponding to the ultraviolet region, it
is meaningful to take averages. Not before approaching wavelengths in the X-ray region do
we have to adopt a different form of description.

Formally, the averaging of some molecular quantity Amol to a macroscopic quantity A =
〈Amol〉 is achieved by the following operation

〈Amol(t, x)〉 = A(t, x) =
1

2T |V |
∫ T

−T

dt′
∫

V

d3x′ A(t − t′, x − x′), (2.24)

where V denotes the spatial volume of averaging. More generally, we can choose an arbitrary
function f(t′, x′) with the following properties: it vanishes outside the space-time volume V ,
it is almost constant inside this volume, it rapidly drops to zero close to the boundary of the
volume, and it is subject to the normalization condition∫

dt′
∫

d3x′ f(t′, x′) = 1. (2.25)

For such a function we may define the average of a quantity by the following prescription:

〈Amol(t, x)〉 = A(t, x) =
∫

dt′
∫

d3x′ f(t′, x′) Amol(t − t′, x − x′). (2.26)

This operation of taking averages commutes with linear operations like differentiation and
convolution.

In particular, Maxwell’s equations as well as eqs. (2.18)–(2.22) also hold for the averaged
electromagnetic fields, charge and current densities, and potentials.

In general, two types of charge carriers will be present in a medium:

1. freely moving charges like conduction electrons in metals or ions in electrolytic solutions;

2. bounded charges whose motion is confined to the vicinity of some resting position by
some binding force.

If an additional electric field is applied, the freely moving charged particles will travel through
the medium. This produces an electric current and leads to electrical conductivity. Those
charges which are bounded to their ionic cores will experience only a small displacement,
resulting in an electric and magnetic polarization of the medium.

In the following sections, we shall first consider the case of free charges and later the case
of bounded charges. We shall find that the equations for averaged quantities are comparatively
simple, and the presence of the material medium becomes manifest only in certain material
functions like conductivity, or electric and magnetic polarizability.
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The requirement of causality for the response of a material medium to a disturbance ex-
erted by an external field as well as a so-called passivity condition will lead to severe con-
straints on the possible form of the material functions.

First, we shall assume the medium to be at rest, i.e. the mean velocity of the bounded
charges vanishes. Only in the last section of this chapter shall we drop this assumption.

2.3 A simple model for the electric current

The theory of electrical conductivity is part of solid-state physics and statistical mechanics.
In the present context, we will restrain ourselves to a simple model developed around 1900
by Paul Drude in his attempts to describe electronic conductivity. If we want to describe elec-
trolytic solutions, the freely moving electrons are to be replaced by ions. We will not discuss
the (largely analogous) theory of ionic conductivity.

For the ith conduction electron carrying a charge e and being in an electric field E, we
assume the following equation of motion to hold:

m
dvi

dt
+ ζvi = eE, (2.27)

where the influences of the ionic cores and the other conduction electrons have been taken
into account globally by a friction term ζvi. The microscopic current density is given by

jmol(t, x) =
∑

i

evi(t) δ(x − xi(t)). (2.28)

Averaging over a volume of size L3 leads to the macroscopic charge density

j(t, x) = envD(t, x) = ρvD(t, x), (2.29)

where n denotes the number of conduction electrons per unit volume. Here ρ = en is the
macroscopic charge density and

vD =
1

nL3

∑
k

vk (2.30)

is the so-called drift velocity, an average velocity that is superimposed onto the random motion
of the conduction electrons. The sum in eq. (2.30) extends over all conducting electrons in the
volume L3 where we take the average. If E is almost constant for scales of order L, the
average of eq. (2.27) leads us to the generalized Ohm’s law:

∂

∂t
j +

ζ

m
j =

ne2

m
E = ω2

pε0E. (2.31)

For reasons that will become clear soon, the quantity

ωp =

√
ne2

mε0
(2.32)
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is called the plasma frequency. For copper we find ωp
∼= 1016 s−1. For a static field E0 the

solution of eq. (2.31) yields the static current density

j(x) =
ne2

ζ
E0(x) = σ0E0(x). (2.33)

Here σ0 is called the static conductivity. For copper (1/ε0)σ0
∼= 5 × 1017 s−1. A simple

argument shows us a connection between the coefficient of friction ζ and the mean free flying
time τ . We assume that the field E constantly accelerates the conduction electrons, where
a = e/mE0, until they are stopped in a collision with other particles. The overall directed
part of their velocity, which is superimposed onto their thermal agitation, has the form shown
in fig. 2.1 and we obtain vD = (eτ/2m)E0. Therefore, ζ/m = 2/τ and

σ0 =
ne2τ

2m
=

1
2
ε0ω

2
pτ. (2.34)

For copper one finds τ ∼= 10−14 s.

Figure 2.1: Illustration of the regular part
of the velocity. The period of the graph de-
termines the mean free flying time τ .

We obtain the standard form of Ohm’s law for static potential differences U = El as
follows. For a wire with cross-section F and length l, the current I is given by

I = jF = σ0FE = σ0F
U

l
, (2.35)

from which we get for the resistance R = U/I = l/σ0F . For currents and fields with a
periodic time dependence, E = E0 e−iωt and j = j0 e−iωt, the general form of Ohm’s law
(2.31) yields(

2
τ
− iω

)
j = ε0ω

2
pE

or

j = σ(ω)E =
ε0τω2

p/2
1 − iωτ/2

E =
σ0

1 − iωτ/2
E. (2.36)

For ω � 1/τ ∼= 1014 s−1, the dynamical conductivity satisfies σ(ω) ∼= σ0.
The physical meaning of the quantity ωp will become clear when we take the divergence

of Ohm’s law in its generalized form

∂j

∂t
+

2
τ

j − ε0ω
2
pE = 0.
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We now use ∇ · j = −∂ρ/∂t and ∇ · E = ρ/ε0 and find

∂2ρ

∂t2
+

2
τ

∂ρ

∂t
+ ω2

pρ = 0.

Hence, the charge density inside the conductor dissolves exponentially with a decay time τ
while it oscillates with the plasma frequency ωp.

For not too large frequencies (ω � 1014 s−1) we can write Maxwell’s equations (2.1)–
(2.4) describing the physics inside a conducting material in the form:

∇ · E =
ρ

ε0
,

∇ × E = −κ
∂B

∂t
,

∇ · B = 0,

∇ × B = κµ0σ0E +
1

κc2

∂E

∂t
.

(2.37)

Application of the operator ∇× for the case ρ ≡ 0 leads to

�E :=
(

1
c2

∂2

∂t2
− ∆

)
E = − σ0

ε0c2

∂E

∂t
,

�B :=
(

1
c2

∂2

∂t2
− ∆

)
B = − σ0

ε0c2

∂B

∂t
.

(2.38)

This is the so-called telegraph equation.
For ω � σ0/ε0, we can neglect the term (1/c2)(∂2/∂t2) as compared to

(σ0/ε0c
2)(∂/∂t), and we obtain a diffusion equation:

∆E =
σ0

ε0c2

∂E

∂t
. (2.39)

The solutions of these equations describe the behavior of field strengths inside conducting
materials. As a simple example, we look for a solution of the form E(t, x) = e−iωtE(x) and
find ∂2E(x)/∂x2 = −i(σ0ω/ε0c

2)E(x), i.e.

E(x) = E0 exp
(
±

√
σ0ω

ε0c2

1 − i√
2

x

)
.

The sign must be chosen in such a way that the solution decreases inside the conductor and
we obtain

E(t, x) = E0 exp
(
−iωt − x

d
(1 − i)

)
, (2.40)

where

d = c

√
2ε0

σ0ω
(2.41)
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is the penetration depth. We see that the damping is stronger for large frequencies than for
small frequencies. For very high-frequency fields, E and j = σ0E can be neglected almost
everywhere except at the surface of the conductor. This phenomenon is called the skin effect.

For copper the penetration depth d as a function of wavelength λ = 2πc/ω is summarized
below:

λ 1 cm 1 m 100 m 10 km

d 2 × 10−4 mm 2 × 10−3 mm 0.02 mm 0.2 mm

If ω is large enough, such that the wire radius r satisfies d � r, the alternating current
resistance becomes

E(x) = E0 exp[−(x/d)(1 − i)]

⇒ I ≈ 2πrσ0

∫ ∞

0

dx E(x) = 2πr E0 σ0 d
1

1 − i

= U
2πrσ0d

l

1
1 − i

,

which implies

R =
l(1 − i)
2πrσ0d

= R0(1 − i)
r

2d
, (2.42)

where R0 = l/(πr2σ0) is the static resistance; R is a complex quantity (with an additional
inductivity), and, in contrast to the static case, 1/R is proportional not to the cross-sectional
area but to the circumference.

The heat generated by the electric current per unit time and unit volume is given by W =
j · E, which for the static case becomes W = σ0E

2.

2.4 Dispersion relations and the passivity condition

We used a simple model to derive the expression for the dynamical conductivity in eq. (2.36),

σ(ω) =
σ0

1 − iωτ/2
. (2.43)

In general, the relation between field strength E and current density j is more complicated.
In the following, we will discuss a linear dependence between E and j. Such behavior should
be realized if the electric fields E are not too strong and if the conductivities are finite (i.e. not
for the case of superconductors).

If j and E are spatially constant and the properties of the medium are time-independent,
the most general linear relation between these two quantities is of the form

ji(t) =
1√
2π

∫
dt′ σ̂ik(t − t′)Ek(t′), (2.44)
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where σ̂ik(t − t′) is some matrix-valued function (or distribution). The time independence of
the properties of the medium is expressed by the fact that σ̂ik is only a function of the time
difference, t − t′.

The current density j(t) can only depend on the field E(t′) in the past, i.e. for t′ ≤ t,
which leads to the causality condition:

σ̂ij(t − t′) = 0 for t − t′ < 0. (2.45)

Furthermore, σ̂ij is real-valued.
For the Fourier transforms,

ji(t) =
1√
2π

∫
dω j̃i(ω) e−iωt,

Ei(t) =
1√
2π

∫
dω Ẽi(ω) e−iωt,

σ̂ik(t) =
1√
2π

∫
dω σik(ω) e−iωt,

(2.46)

the convolution theorem yields the following relation between j and E:

j̃i(ω) = σik(ω)Ẽk(ω). (2.47)

The reality condition for σ̂ik implies, for the Fourier transform,

σik(ω) =
1√
2π

∫
dt σ̂ik(t) eiωt, (2.48)

the condition

σ∗
ik(ω) = σik(−ω). (2.49)

Due to the causality condition, namely σ̂ij(t) = 0 for t < 0, the integral over σ̂ik(t) extends
only over positive time values, t ≥ 0. This implies that, even for complex values of z = ω+iη
with η ≥ 0, the integral

σik(z) =
1√
2π

∫ ∞

0

dt σ̂ik(t) eiωt−ηt (2.50)

exists and is a holomorphic function in the upper half-plane for η = Im z > 0. For the so-
defined function σik(z), a generalized reality condition holds:

σ∗
ik(z) = σik(−z∗). (2.51)

Any function σik(z) holomorphic in the upper half-plane satisfies Cauchy’s integral formula:

σik(z) =
1

2πi

∫
C

dz′
σik(z′)
z′ − z

, (2.52)
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Figure 2.2: The integration contour C runs
along the real axis and is closed by a semicir-
cle in the upper half-plane, which in the limiting
case becomes infinitely large.

where C denotes an integration contour as shown in fig. 2.2: C extends along the real axis and
is closed by a semicircle in the upper half-plane, which in the end becomes infinitely large.

Furthermore, if σ(z) → 0 for |z| → ∞ (sufficiently fast) and Im z ≥ 0, the contribution
from the infinitely large semicircle vanishes and we obtain

σik(z) =
1

2πi

∫ ∞

−∞
dω′ σik(ω′)

ω′ − z
. (2.53)

On physical grounds the vanishing of σ(z) for large values of z seems reasonable, because
one would expect the current j to be negligible for infinitely high frequencies of E, as the
motion of the electrons can no longer follow the rapidly changing field. The expression we
derived from our simple model,

σ(z) =
σ0

1 − izτ/2
,

has this feature and, in addition, for τ ≥ 0 satisfies the reality and the holomorphy conditions.
Writing z = ω + iε with ε > 0 we recover the function σik(ω) for real arguments in the

limiting case ε → 0:

σik(ω) =
1

2πi

∫ ∞

−∞
dω′ σik(ω′)

ω′ − ω − iε
. (2.54)

(Expressions of this type are always to be understood in the limit ε → 0.)
The integrand contains the distribution

1
ω′ − ω − iε

=
ω′ − ω

(ω′ − ω)2 + ε2
+ i

ε

(ω′ − ω)2 + ε2
. (2.55)

It is easily verified that for an arbitrary test function ϕ the following identities hold:

lim
ε→0

∫
dω′ ε

(ω′ − ω)2 + ε2
ϕ(ω′) = πϕ(ω) = π

∫
dω′ δ(ω′ − ω)ϕ(ω′)

and

lim
ε→0

∫
dω′ ω′ − ω

(ω′ − ω)2 + ε2
ϕ(ω′) = lim

ε→0

[∫ ω−ε

−∞
dω′ ϕ(ω′)

ω′ − ω
+

∫ ∞

ω+ε

dω′ ϕ(ω′)
ω′ − ω

]
=:

∫
dω′ P

(
1

ω′ − ω

)
ϕ(ω′).
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The last equation defines the distribution P(1/(ω′−ω)), which is also called the Cauchy prin-
cipal value of 1/(ω′−ω). For the divergent integral

∫
dω′ ϕ(ω′)/(ω′−ω), it tells us to take the

integration limits symmetrically from both sides to the singularity at ω′ = ω. The divergent
part of the integral thus vanishes. The result of this calculation may be summarized in the
well-known formula:

1
ω′ − ω − iε

= P
(

1
ω′ − ω

)
+ iπδ(ω′ − ω). (2.56)

If we insert this formula into the integral representation of σik(ω), eq. (2.54), and separate the
real and imaginary parts, σik(ω) = Re σik(ω) + i Imσik(ω), we obtain

Reσik(ω) =
1
π

∫
dω′ P

(
1

ω′ − ω

)
Im σik(ω′)

Im σik(ω) = − 1
π

∫
dω′ P

(
1

ω′ − ω

)
Reσik(ω′).

(2.57)

Because of these so-called dispersion relations, the function σik is already determined by its
real or imaginary part alone.

In the derivation of the dispersion relations we only made use of the causality condition
and a sufficiently rapid decay of σ(z) for large values of z in the upper half-plane. This last
condition may even be relaxed when we divide through some function f(z) (e.g. a polynomial
function) and derive dispersion relations for σ(z)/f(z).

Dispersion relations are of fundamental importance because they are intimately related
to linear causal dependences. We shall see more examples soon. The dispersion relations are
sometimes also called Kramers–Kronig relations.

The Joule heat j · E generated by the current per unit volume and unit time cannot be
negative. Therefore, the integration over time yields∫

dt j(t) · E(t) =
1√
2π

∫
dt

∫
dt′ Ei(t) σ̂ik(t − t′)Ek(t′) ≥ 0. (2.58)

This is the so-called passivity condition of the medium. It expresses the fact that, eventually,
the medium can only absorb energy but not emit. The implication of the passivity condition
for σik(ω) is most easily expressed in terms of the Fourier transforms and follows when we
chose the electric field to be periodic: Ei(t) = Re {Ei e−iωt}. Taking the average over one
period should result in a non-negative value for the Joule heat. Making use of the following
identity,

〈Re{A e−iωt}Re{B e−iωt}〉 = 1
2 Re{AB∗}, (2.59)

yields

〈Re{Ei e−iωt}Re{σik(ω)Ek e−iωt}〉 = 1
2 Re{E∗

i σik(ω)Ek}
= 1

4 {E∗
i σik(ω)Ek + Eiσ

∗
ik(ω)E∗

k} = 1
4 E∗

i (σik + σ∗
ki)Ek ≥ 0.

(2.60)

Therefore, the matrix

σik + σ+
ik = σik + σ∗

ki
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must be positive. In general, one can show that because of Onsager’s symmetry relations for
irreversible thermodynamic processes, the matrix σij has to be symmetric. This leads to the
following form of the passivity condition:

Reσik is positive semidefinite.

The relation derived from our model,

σik(ω) = δik
σ0

1 − iωτ/2
,

satisfies this condition for σ0 ≥ 0.

2.5 Electric displacement density and magnetic field
strength

In addition to the conduction electrons, the influence of the molecular cores is also important.
Although their charges cannot move freely, their presence gives rise to the phenomena of
electric and magnetic polarization. Let

φmol(t, x) =
∑

ν

φν(t, x) and Amol(t, x) =
∑

ν

Aν(t, x) (2.61)

be the scalar and vector potentials, respectively, corresponding to the molecular cores. Ac-
cording to eqs. (2.22) and (2.23) the gauge potentials for a single molecular core, written in
the Lorentz gauge, are given by

φν(t, x) =
1

4πε0

∫
d3x′ ρν(t − |x − x′|/c, x′)

|x − x′| ,

Aν(t, x) =
κµ0

4π

∫
d3x′ jν(t − |x − x′|/c, x′)

|x − x′| .

(2.62)

Let xν be the center of mass for molecule ν (see fig. 2.3). Expanding

|x − x′| = |x − xν + xν − x′| = |x − xν − x′′|

up to first order in x′′ = |x′ − xν |, we obtain (see fig. 2.3)

4πε0φν(t, x) =
qν

|x − xν | − pν(tν ret)∇ 1
|x − xν | +

1
c

∂p(tν ret)
∂t

x − xν

|x − xν | + · · · ,

4π

κµ0
Aν(t, x) =

∂p(tν ret)/∂t

|x − xν | − 1
κ

mν(tν ret) × ∇ 1
|x − xν | (2.63)

+
1
κc

∂m(tν ret)
∂t

× x − xν

|x − xν | + · · · ,
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where we have used the following relations and definitions:

qν =
∫

d3x′ ρν(t, x′), total charge of ν,

pν(t) =
∫

d3x′ (x′ − xν) ρν(t, x′), electric dipole moment of ν,

mν(t) =
κ

2

∫
d3x′ (x′ − xν) × jν(t, x′), magnetic dipole moment of ν,

tν ret = t − |x − xν |
c

, retarded time.

(2.64)

Figure 2.3: The coordinate system cho-
sen for the determination of the electric
displacement density and the magnetic
field strength.

Furthermore, in the derivation of the expressions for φν and Aν we have made use of the
following identities:

∇k(xijk) = ji − xi
∂ρ

∂t
and ∇k(xixrjk) = xijr + xrji − xixr

∂ρ

∂t
, (2.65)

and neglected quadrupole terms and terms of higher order.
The molecular densities for the charge, the electric dipole moment, and the magnetic

dipole moment are given by

ρmol =
∑

ν

qν δ(3)(x − xν(t))

P mol =
∑

ν

pν(t) δ(3)(x − xν(t))

Mmol =
∑

ν

mν(t) δ(3)(x − xν(t)).

(2.66)

If, in the formulae for the molecular potentials,

φmol(t, x) =
∑

ν

φν(t, x) and Amol(t, x) =
∑

ν

Aν(t, x),

we replace the fields φν and Aν by the expressions of eq. (2.62), the averaging procedure
needs special care. We do not necessarily obtain the molecular potentials φmol and Amol by
applying the retarded Green’s functions Gret to the molecular densities in eq. (2.66). Two
mutually related problems turn up in this context:
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1. We have∫
d3x′ ρmol(t − |x − x′|/c, x′)

|x − x′| =
∑

ν

∫
d3x′ qν

δ(x′ − xν(t − |x − x′|/c))
|x − x′| .

Integration over the δ-function yields a contribution at a value of x′ for which the argu-
ment of the δ-function vanishes: x′ = xν(t′ret), where t′ret = t − |x − x′|/c. Because
of the identity∫

d3x′ g(x′) δ(h(x′)) =
1

| det(∂hi/∂x′
j)(x

′
0)|

g(x′
0) with h(x′

0) = 0,

we also have to take into account a determinant, which in our case is of the form

D = 1 + O(v/c),

where v denotes the typical velocity of the molecular cores. As we assumed the medium
to be at rest, we may write D ≈ 1. Furthermore, the next-to-leading-order term, O(v/c),
will not contribute to the temporal average because the number of cores entering a given
volume is, in the average, equal to the number of cores leaving it.

2. As the δ-function in eq. (2.66) is time-dependent, we cannot simply conclude that

∂P mol/∂t =
∑

ν

∂pν(t)/∂t δ(3)(x − xν(t))

and

Mmol =
∑

ν

∂mν(t)/∂t δ(3)(x − xν(t)).

However, the additional terms depending on the derivative of the δ-function are again
suppressed by factors of v/c and cancel in the average.

In view of problems 1 and 2, we may write

φmol(t, x) =
1

4πε0

∫
d3x′ ρmol(t′ret, x

′)
|x − x′|

+
1

4πε0

∫
d3x′

[
P mol(t′ret, x

′) · ∇′ 1
|x − x′|

+
1
c

∂P mol

∂t
(t′ret, x

′) · x − x′

|x − x′|
]

+ δφ

=
1

4πε0

∫
d3x′ ρmol(t′ret, x

′) − (∇′ · P mol)(t′ret, x
′)

|x − x′| + δφ, (2.67)

and similarly

Amol(t, x) =
κµ0

4π

∫
d3x′ (∂P mol/∂t)(t′ret, x

′) + (1/κ)(∇′ × Mmol)(t′ret, x
′)

|x − x′| + δA. (2.68)

Here, δφ and δA denote contributions that are small or cancel in the average.
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The last steps in eqs. (2.67) and (2.68) involve a partial integration. Note that in the final
expressions the operator ∇′, occurring in the terms (∇′ · Pmol) and (∇′ × Mmol), only acts
on the second argument x′, but not on the retarded time.

In addition to the charge density ρmol, the scalar potential φmol also contains a polarization
density ρmol = −(∇ · P mol), which is due to the fact that during the process of polarization
some charges may be expelled out of a volume element (see fig. 2.4, left).

Figure 2.4: (Left) Charges are expelled out of a volume element of the medium due to polariza-
tion. (Right) Representation of the magnetic dipole moments by a ring current.

Two polarization terms contribute to the electric current: an electric polarization current
∂P mol/∂t, which corresponds to the displacement of charges in time-dependent polarization
processes, and a magnetic polarization current (1/κ)(∇ × Mmol), whose origin becomes
obvious when we represent a magnetic dipole moment by a ring current (see fig. 2.4, right).

Taking the average of eqs. (2.67) and (2.68), we finally obtain the macroscopic potentials Φ
and A, expressed in terms of the macroscopic densities ρ, j, P = 〈P mol〉, and M = 〈Mmol〉:

Φ(t, r) =
1

4πε0

∫
d3r′

ρ(t′ret, r
′) − (∇′ · P )(t′ret, r

′)
|r − r′| , (2.69)

A(t, r) =
κµ0

4π

∫
d3r′

j(t′ret, r
′) + (∂P /∂t)(t′ret, r

′) + (1/κ)(∇′ × M)(t′ret, r
′)

|r − r′| .

In these expressions, we have also taken into account further contributions to the average
charge and current density due to the charges and currents of additional conduction electrons
that have been brought into the medium.

From these potentials we can derive the averaged electric and magnetic field strengths,

E = −∇Φ − κ
∂A

∂t
and B = ∇ × A,

which automatically satisfy the homogeneous Maxwell’s equations:

∇ × E = −κ
∂B

∂t
and ∇ · B = 0. (2.70)

Furthermore, because of eq. (2.69), we obtain in the Lorentz gauge (2.20)

�Φ = ∇ · E =
1
ε0

(ρ − ∇ · P ),

�A = ∇ × B − 1
κc2

∂E

∂t
= κµ0

(
j +

∂P

∂t

)
+ µ0∇ × M .

(2.71)
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Introducing new field quantities

H :=
1
µ0

B − M and D := ε0E + P , (2.72)

we can write the inhomogeneous Maxwell’s equations in the form:

∇ × H = κ

(
j +

∂D

∂t

)
and ∇ · D = ρ. (2.73)

We can see that, phenomenologically, we can take into account the influence of a medium
by introducing new field quantities D, the electric displacement density, and H , the magnetic
field strength (not to be confused with the magnetic induction B). P and M are called the
electric and magnetic polarization (density), respectively. Note that with our convention, E is
not equal to D nor is B equal to H , even for vacuum, although M = P = 0. For the vacuum
these identifications are sometimes made if Gaussian units of measurement are used. However,
our definitions have the advantage that they are independent of the chosen unit system and that
the inhomogeneous Maxwell’s equations assume their simplest form.

For given j and ρ, the field quantities are determined by Maxwell’s equations (2.70) and
(2.73) only if the functional dependences of D and H on E and B are known:

D = D[E, B], H = H[E, B].

In general, D and H may have complicated dependences on the global space-time behavior
of the fields E and B. However, for E and B not too large, we can expect, within a good
approximation, the relations between D, H and E, B to be linear.

Under a parity transformation x �→ −x, the fields D and E change sign: E(x) =
−E(−x), D(x) = −D(−x); whereas for B and H we have: B(x) = B(−x), H(x) =
H(−x). Therefore, in a linear approximation, D will only depend on E and H will only
depend on B, at least, if the medium itself when averaged over small spatial regions is invari-
ant under parity transformation x �→ −x. As long as we are allowed to assume the applied
fields to be homogeneous over regions containing many molecular cores, we can neglect their
spatial dependence and write the linear relation, as described in section 2.4, in the form

Pi(t) =
ε0√
2π

∫
dt′ χ̂ik(t − t′) Ek(t′), Di(t) = ε0Ei(t) + Pi(t)

Mi(t) =
1√
2π

∫
dt′ χ̂Mik(t − t′) Hk(t′), Bi(t) = µ0(Hi(t) + Mi(t)).

After a Fourier transformation we get:

P̃i(ω) = χik(ω)ε0Ẽk(ω),

D̃i(ω) = εik(ω) ε0Ẽk(ω), (2.74)

εik(ω) = δik + χik(ω),
and

M̃i(ω) = χM ik(ω) H̃k(ω),

B̃i(ω) = µik(ω) µ0H̃k(ω), (2.75)

µik(ω) = δik + χMik(ω).
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The quantities χik(ω) and χMik(ω) are called the electric and magnetic susceptibilities, re-
spectively, and εik and µik are the relative electric and magnetic permeabilities, respectively.
Sometimes the expression relative dielectric tensor is also used for εik.

For a stronger spatial dependence of the fields, the inhomogeneity may be taken into ac-
count by including also the first spatial derivatives of E and H . Before we discuss the prop-
erties of the material quantities introduced above (χ, χM, ε, and µ), we want to draw some
simple conclusions from Maxwell’s equations for media:

∇ · D = ρ, ∇ · B = 0,

∇ × H = κ

(
j +

∂D

∂t

)
, ∇ × E = −κ

∂B

∂t
.

(2.76)

1. At an interface (with normal vector N ) between two different media, the quantities

N · B and N × E,

the normal component of B and the tangential component of E, are continuous. If the
interface carries neither a surface charge nor a surface current, then

N · D and N × H

are also continuous.

2. If ρ ≡ 0 and j ≡ 0, the energy balance contained in the fields and the medium assumes
the form

∇ · S + E · ∂D

∂t
+ H · ∂B

∂t
= 0. (2.77)

Here, S = (1/κ)E ×H denotes the Poynting vector. For this case the continuity condi-
tions at the interface also imply the continuity of N · S. No energy is assembled in the
interface.

3. If ρ ≡ 0 and j ≡ 0, the momentum balance reads

∂

∂t
ρP

i −∇iTij = 0, (2.78)

where ρP
i = κ(D × B)i is the momentum density and

Tij = EiDj + HiBj − 1
2 (D · E)δij − 1

2 (H · B)δij (2.79)

is Maxwell’s stress tensor. Here, we have assumed the relations between D and E and
between H and B to be independent of x.
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2.6 Index of refraction and coefficient of absorption

This section contains a first discussion of the propagation of waves in media. The simplest
but most important case is an isotropic medium, for which we have εij(ω) = δijε(ω) and
µij(ω) = δijµ(ω). Furthermore, we assume ji(ω) = σ(ω)Ei(ω) and ρ(ω) = 0. Given these
conditions we look for wave-like solutions of Maxwell’s equations (2.76). We make the fol-
lowing ansatz,

E = E0 e−i(ωt−kx), B = B0 e−i(ωt−kx),

D = D0 e−i(ωt−kx), H = H0 e−i(ωt−kx),
(2.80)

an insert it into Maxwell’s equations, obtaining

k · D = 0, k · B = 0,

k × H = −κωε0ηE, k × E = κωB,
(2.81)

where

η(ω) = ε(ω) +
iσ(ω)
ε0ω

. (2.82)

Now the conductivity contributes to the complex generalized electric permeability η. For very
large frequencies, the distinction between free and bound charges becomes less obvious. In
general, k will be complex for real ω, so that for some directions the waves will decay expo-
nentially.

Furthermore, we have

k × (k × E) = κωk × B = κωµµ0k × H = −µη
ω2

c2
E,

k × (k × E) = k · (k · E) − k2E = −k2E,

from which

k2 =
ω2

c2
ηµ, i.e. k =

ω

c

√
ηµ =

ω

c
p(ω). (2.83)

We decompose p(ω) with respect to its real and imaginary parts:

p(ω) =
√

µη(ω) = n(ω) + iκ(ω). (2.84)

Without loss of generality, we can choose ω > 0 and consider the propagation of waves in the
z direction. The sign of the square root in (2.84) should be such that n(ω) > 0. For this case
E(t, z) assumes the form

E(t, z) = E0 exp(−iωt + ikz)

= E0 exp
(
−iωt +

iω
c

n(ω)z − ω

c
κ(ω)z

)
= E0 exp

[
+i

ω

c
n(ω)

(
z − ct

n(ω)

)]
exp

(
−ω

c
κ(ω)z

)
. (2.85)
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This describes an exponentially damped wave propagating in the positive z direction with a
phase velocity of cph(ω) = c/n(ω). The real part n(ω) of eq. (2.84)

n(ω) =
c

cph(ω)
(2.86)

is called the index of refraction or refractive index of the medium. The imaginary part κ(ω) is
related to the coefficient of absorption α(ω) of the medium:

α(ω) =
ω

c
κ(ω). (2.87)

Now we want to convince ourselves that indeed κ(ω) > 0. Essentially, this is a conse-
quence of the passivity condition for the conductivity,

Reσ(ω) ≥ 0,

as well as the passivity conditions

Im ωµ(ω) ≥ 0 and Imωε(ω) ≥ 0

for µ(ω) and ε(ω), which we shall derive in the next section. These conditions imply that the
imaginary parts of both η(ω) and µ(ω) are positive. Thermodynamic stability even allows us
to deduce that η(ω) and µ(ω) must lie in the first quadrant of the complex plane, and in this
case

√
ηµ(ω) must also lie in the first quadrant. Many of the substances that are important in

optics even have µ(ω) ≈ 1, so that p(ω) = n(ω) + iκ(ω) ≈ √
η(ω) lies in the first quadrant

due to the passivity conditions.
These arguments may be generalized to anisotropic linear media, for which the conductiv-

ity and the permeabilities are tensors. Also in these materials the real part of the conductivity
σij(ω) and the imaginary parts of εij(ω) and µij(ω) contribute to the absorption.

In any resistor we find energy dissipation due to heating and, therefore, it seems obvious
that conductivity implies absorption. A certain degree of absorption cannot be avoided in a
material medium, because the real and imaginary parts of σij(ω), µij(ω), and εij(ω) cannot
be chosen arbitrarily but are related through dispersion relations – see also the next section for
a discussion of µij(ω) and εij(ω).

Depending on the relevance of absorption one distinguishes two disciplines in optics:

(A) Metal optics: Absorption due to conductivity is predominant and the imaginary parts of
µij(ω) and εij(ω) are large. Wave propagation inside these media is not possible and,
therefore, the subject of metal optics mainly deals with surface phenomena or thin layers
of absorbing materials. In this book we will not enter into the subject of metal optics.

(B) Optics of transparent media: In these media, conductivity and absorption are negligible
and wave propagation is possible.

Looking at the optics of transparent media, the following distinction turns out to be useful:

B1) Homogeneous and isotropic media: their treatment is simple and almost covered by the
considerations in this chapter.



2.7 The electromagnetic material quantities 35

B2) Homogeneous and anisotropic media: they are the subject of crystal optics, which we
will discuss in chapter 4.

B3) Inhomogeneous and isotropic media: they are the subject of geometrical optics and the
theory of diffraction – their theoretical treatment is one of the central themes of this book.

B4) Inhomogeneous and anisotropic media: they turn out to be of less practical importance,
and their general theoretical treatment is difficult and still not completely worked out –
in this book, we will only consider the most important special cases of reflection and
refraction at an interface between two anisotropic homogeneous media.

2.7 The electromagnetic material quantities

In the following discussion of the quantities

εik(ω) = δik + χik(ω) and µik(ω) = δik + χM ik(ω),

we will concentrate on the electric susceptibility χik(ω). The properties of the magnetic sus-
ceptibility χM ik(ω) are similar and, as long as we neglect ferromagnetic substances, the values
of χM ik(ω) are much smaller than the values of the electric susceptibility. Ferromagnets are
not transparent and are of no relevance for the optics of transparent media. For simplicity, we
will assume in the following that µ(ω) ≡ 1.

The electric polarization

Pi(t) =
ε0√
2π

∫
dt′ χ̂ik(t − t′)Ek(t′) (2.88)

can only depend on Ek(t′) for t′ ≤ t. As the discussion about conductivity in section 2.4
revealed, this causality condition implies that

χij(z) =
1√
2π

∫
dt exp(izt)χ̂ij(t)

is holomorphic in the upper z plane. Furthermore, we would expect that for large frequencies
the polarization is small, which leads us to

lim
|z|→∞, Im z≥0

χij(z) = 0. (2.89)

In section 2.4 we saw that from this condition we can derive the dispersion relations:

Reχik(ω) =
1
π

∫
dω′ P

(
1

ω′ − ω

)
Im χij(ω′)

Im χik(ω) = − 1
π

∫
dω′ P

(
1

ω′ − ω

)
Reχij(ω′),

(2.90)
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and from eq. (2.90) we get

χik(ω) = Re χik(ω) + i Imχik(ω)

=
1
π

∫
dω′

[
P

(
1

ω′ − ω

)
+ iπδ(ω′ − ω)

]
Im χik(ω′)

=
1
π

∫
dω′ Im χik(ω′)

ω′ − ω − iε
. (2.91)

As χ̂ik is real, we have χik(ω)∗ = χik(−ω). Therefore, Im χik(ω) is an odd function of ω
and Re χik(ω) is an even function. If we make use of these properties, the dispersion relations
assume the form:

Reχik(ω) =
1
π

∫ ∞

0

dω′ P
(

2ω′

ω′2 − ω2

)
Im χik(ω′). (2.92)

In section 2.6 we saw that the dispersion relations establish a connection between the fre-
quency dependence of the refractive index and the absorption of a substance. This explains
the expression “dispersion relation”.

In order to derive a passivity condition for χik(ω), we start from the balance relation
satisfied by the energy

∇ · S + E · ∂D

∂t
+

1
2µ0

∂B2

∂t
= 0.

Because D = ε0E + P , we may rewrite this equation in the form

− d
dt

∫
V

d3x

(
ε0

2
E2 +

1
2µ0

B2

)
=

∫
∂V

S · df +
∫

V

d3x E · ∂P

∂t
. (2.93)

From this equation we learn that the electromagnetic energy of the fields inside a volume
V decreases either by emission of radiation or by polarizing the medium. We would expect
that, if we apply a time-dependent electric or magnetic field that vanishes for t → ±∞, the
medium can only absorb but not release energy (otherwise it would not have been in a stable
equilibrium state). This leads us to the passivity condition∫ ∞

−∞
E(t)

∂P (t)
∂t

≥ 0. (2.94)

The equality sign holds if and only if there is no absorption and/or dissipation of electromag-
netic field energy. Written in terms of the periodic fields

Ei(t) = Re{Ei e−iωt}, and Pi(t) = Re{χik(ω)ε0Ek e−iωt}

so that

∂Pi(t)
∂t

= Re{χik(ω)(−iω)ε0Ek e−iωt},
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we obtain the passivity condition in Fourier space after taking the time average,

Re{E∗
i χik(ω)(−iω)Ek} = Im{E∗

i ωχik(ω)Ek}
= E∗

i {(ω/2i)[χik(ω) − χ∗
ki(ω)]}Ek ≥ 0 (2.95)

(compare the derivation of eq. (2.60)). Hence, (ω/2i)[χik(ω)−χ∗
ki(ω)] is a positive semidef-

inite matrix, and the matrix χik is Hermitian for case that there is no absorption.
In an isotropic medium, we have χik(ω) = χ(ω)δik, and the passivity condition reads

Im ωχ(ω) ≥ 0. (2.96)

This condition is compatible with the reality condition Im χ(−ω) = −Im χ(ω), from which
we can deduce the even stronger statement that

Im zχ(z) ≥ 0 for Im z ≥ 0 (2.97)

in the upper half-plane.
This result follows from the integral representation

χ(z) =
1
π

∫
dω′ Im χ(ω′)

ω′ − z
, (2.98)

which leads to

Im zχ(z) =
1
π

∫
dω′ Im χ(ω′) Im

{
z

ω′ − z

}
=

1
π

∫
dω′ Im χ(ω′)

ω′ Im z

|ω′ − z|2 ≥ 0 for Im z ≥ 0. (2.99)

So, zχ(z) is holomorphic in the (open) upper half-plane H+ and maps H+ onto itself. Such
functions are called Pick functions. If f(z) and g(z) are Pick functions, so are f(z) + g(z)
and f(g(z)).

So far we have concentrated on the behavior of χik(z) as a function of the complex ar-
gument z. However, we can also make some general statements about the symmetries of the
matrix χik(z) with respect to the indices i and k. The static case ω = 0 is particularly simple.

Due to the reality condition,

χ∗
ik(ω) = χik(−ω),

χik(0) is real. Furthermore, already from thermodynamic arguments we obtain the symmetry

χik(0) = χki(0). (2.100)

Indeed, following our arguments in connection with the discussion of the passivity condition,
we may conclude on the basis of the energy balance that the change in internal energy U of
a medium, as a response to changes in the thermodynamic variable P , the entropy S, and
maybe further variables Xα, is of the form

dU = T dS + E · dP +
∑
α

ξα dXα. (2.101)
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For the free energy F = U − TS we find

dF = −S dT + E · dP +
∑
α

ξα dXα. (2.102)

This implies that

Ei =
(

∂F

∂Pi

)
T,X

. (2.103)

The linear theory considered before yields

ε0Ei = χ−1
ik (0)Pk

and therefore

1
ε0

χ−1
ik (0) =

∂Ei

∂Pk
=

(
∂2F

∂Pi ∂Pk

)
T,X

=
1
ε0

χ−1
ki (0). (2.104)

This proves the symmetry of χ−1
ik and, hence, of χik. Strictly speaking, one has to distinguish

the susceptibility at constant temperature and the susceptibility at constant entropy, which is
given by

1
ε0

χ−1 S
ik (0) =

(
∂2U

∂Pi ∂Pk

)
S,X

. (2.105)

Both are symmetric. The requirement of thermodynamic stability implies that εik(0) is posi-
tive definite.

For the non-static case we have ω �= 0, and the symmetry of χik(ω) can be derived from
the more general symmetry principles for the kinetic coefficients of Onsager and Casimir,
which follow from microscopic time reversion invariance. Therefore,

χik(ω) = χki(ω), (2.106)

and the passivity condition simplifies to the statement that

Im ωχik(ω) is positive semidefinite. (2.107)

In particular, χik has to be real for vanishing absorption.
If χik also depends on an external magnetic field or on some other parameter that changes

sign under time reversion, the Onsager–Casimir relations require

χik(B, ω) = χki(−B, ω). (2.108)

For the absorption-free case we find

χik(B, ω) = χ∗
ki(B, ω) = χ∗

ik(−B, ω),

and therefore

Reχik(B, ω) = Re χik(−B, ω),

Im χik(B, ω) = −Im χik(−B, ω).
(2.109)
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2.8 The oscillator model for the electric susceptibility

As we did for the electric conductivity, we now want to formulate a simple microscopic model
for the electric susceptibility. For this purpose we imagine the electrons of a molecular core to
be bounded elastically to their equilibrium position. Again, the interaction with other charge
carriers is effectively described by a friction term. Under these conditions, the equation of
motion of an electron in an external electric field F becomes

m

(
∂2x

∂t2
+ 2γ

∂x

∂t
+ ω2

0x

)
= eF , (2.110)

which for a periodic field, F = F 0 e−iωt, leads to the solution

x =
e

m

1
ω2

0 − ω2 − 2iωγ
F .

The total dipole moment, p =
∑Z

i=1 exi, of Z electrons in a molecular core is now given by

p =
Ze2

m

1
ω2

0 − ω2 − 2iωγ
F =: α(ω)ε0F . (2.111)

Here α(ω) is the molecular polarizability. For ω close to ω0, this quantity is large and purely
imaginary. This rather crude oscillator model may be improved by a quantum-mechanical
calculation where the periodic field F is treated as a time-dependent disturbance:

α(ω) =
1
ε0

e2

m

Z∑
r=1

fr

ω2
r − ω2 − 2iωγr

. (2.112)

The resonance frequencies ωr correspond to the excitation energies above the ground state:

�ωr = Er − E0.

The quantum-mechanical oscillation intensities fr = (2m/�)ωr|〈Er|Q3|E0〉|2 can be de-
rived from the matrix elements of the position operator Q3. They are a measure for the cou-
pling strength of an oscillation mode with frequency ωr to the external field. They satisfy the
Thomas–Kuhn sum rule

∑
fr = Z.

Let n be the number of molecular cores per unit volume. The polarization density is then
given by

P = np = nα(ω)ε0F . (2.113)

If we were allowed to identify the field strength F at the position of a molecular core with the
averaged field strength E, we would find an electric susceptibility of χ = nα. However, F is
the average field strength at the position of a molecule, while E is the average field strength
within a small volume, independent of there being a molecule or not. It is only for very small
densities n (e.g. in gases) that we may set approximately E = F .
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In general, within the framework of a linear theory, the difference between E and F will
be proportional to the polarization density P :

F = E + r(P ), (2.114)

where r denotes some linear mapping. If we also assume the molecular polarizability α to be
a general linear mapping, we obtain

P = nε0α(E + r(P )),

i.e.

P = (1 − nε0αr)−1nε0α(E)

or

χ = (1 − nε0αr)−1nα (2.115)

and

nα = χ(1 + rε0χ)−1. (2.116)

For an isotropic medium, one can show that

r(P ) =
1

3ε0
P , (2.117)

so, for this case,

χ =
nα

1 − 1
3nα

nα =
χ

1 + 1
3χ

.

Setting χ = ε − 1, the last equation becomes

1
3nα =

ε − 1
ε + 2

. (2.118)

This is the well-known Lorentz–Lorenz formula.
For our simple model, α(ω) is obviously a Pick function for γ ≥ 0. As the function f(z) =

nz/(1− ε0rnz) is also a Pick function, χ satisfies the passivity and causality conditions. The
reality condition is also fulfilled.

2.9 Material equations in moving media

Up to now the material equations for isotropic media,

j = σE (2.119)
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and

D = εε0E, H =
1

µµ0
B, (2.120)

have only been formulated for the case of a medium at rest. The generalization to moving me-
dia is a surprisingly difficult problem, which is not only of fundamental interest. The solution
of this problem is only possible within the relativistically covariant formulation of Maxwell’s
equations.

Maxwell’s equations,

∇ · B = 0, ∇ × E = −κ
∂B

∂t
, (2.121)

∇ · E =
ρ

ε0
, ∇ × B = µ0κ

(
j + ε0

∂E

∂t

)
, (2.122)

can be written in the following relativistically covariant form:

∂µF̂µν = 0, (2.123)

∂µFµν = κµ0j
ν , (2.124)

where we have introduced the current 4-vector

jµ = (ρc, j), (2.125)

the antisymmetric field tensor

Fµν =


0 −E1/κc −E2/κc −E3/κc

+E1/κc 0 −B3 +B2

+E2/κc +B3 0 −B1

+E3/κc −B2 +B1 0

 , (2.126)

and the dual field tensor

F̂µν := 1
2εµνρσFρσ.

For a medium at rest, the inhomogeneous Maxwell’s equations (2.122) have to be replaced
by

∇ · D = ρ, ∇ × H = κ

(
j +

∂D

∂t

)
. (2.127)

For a relativistic formulation we must introduce one more field tensor:

Gµν =


0 −κcD1 −κcD2 −κcD3

+κcD1 0 −H3 +H2

+κcD2 +H3 0 −H1

+κcD3 −H2 +H1 0

 . (2.128)
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The inhomogeneous equations now read

∂µGµν = κjν . (2.129)

The homogeneous equations (2.123) and (2.121) remain unchanged.
For a relativistically covariant formulation of eqs. (2.119) and (2.120), we first define the

(local) velocity vector of the medium:

uµ = (γc, γv) with γ =
1√

1 − v2/c2
. (2.130)

We start with eq. (2.119), which generalizes to

jµ − 1
c2

uµuνjν = −κσuνF νµ. (2.131)

In the rest of the system we have uν = (c, 0). For µ = 0 we obtain an identity, and for
µ = 1, 2, 3 we recover the material equation j = σE. Since eq. (2.131) is relativistically
covariant, it holds in any inertial system.

For an arbitrary reference system, the µ = 0 component of eq. (2.131) becomes

ρc − γ

c
uνjν =

σγ

c
v · E,

and for µ = 1, 2, 3 we obtain

j − 1
c2

γvuνjν = γσ E + γκσ v × B.

Solving the first equation for uνjν and inserting the result into the second equation yields

j = ρv + σγ
[
E − v

c

(v

c
· E

)]
+ σκγ v × B. (2.132)

The first term on the right-hand side of this equation is a contribution from convection, the
second term generalizes the relation between j and E to moving media, and the third term is
the contribution of the Lorentz force.

We now come to eqs. (2.120), which hold in the rest of the medium. With uµ again denot-
ing the velocity vector of the medium, these equations become

uµGµν = κ2c2εε0uµFµν , uµĜµν =
1

µµ0
uµF̂µν . (2.133)

We solve these relations for Gµν making the following ansatz, which takes into account the
transformation and symmetry properties of Fµν :

Gµν = αFµν +
β

c2
(uµuρF

ρν − uνuρF
ρµ). (2.134)

The dual tensor for this ansatz reads

Ĝµν = αF̂µν +
β

c2
εµν ρσuρu

τFτσ. (2.135)
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The coefficients α and β are determined by inserting eqs. (2.134) and (2.135) into eq. (2.133):

α =
1

µµ0
,

β = κ2c2εε0 − 1
µµ0

=
1
µ0

(
ε − 1

µ

)
.

(2.136)

(The last equation follows from κ2c2ε0µ0 = 1.)
For vacuum we have ε = µ = 1, i.e. β = 0 and

Gµν =
1
µ0

Fµν , (2.137)

i.e. indeed

D = ε0E and B =
1
µ0

H .

Finally, we rewrite eqs. (2.134) and (2.136) in a three-dimensional notation:

D = ε0

[
1
µ

+ γ2

(
ε − 1

µ

)]
E

− γ2ε0

c2

(
ε − 1

µ

)
v(v · E) − γ2κε0

(
ε − 1

µ

)
v × B,

H =
1
µ0

[
ε − γ2

(
ε − 1

µ

)]
B

+
γ2

µ0c2

(
ε − 1

µ

)
v(v · B) + γ2κε0

(
ε − 1

µ

)
v × E.

(2.138)

For the limiting cases v = 0 or ε = µ = 1 we recover the well-known relations. Furthermore,
we notice that for v �= 0 the medium becomes anisotropic and B contributes to D, and E
contributes to H .
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In this chapter we will consider some fundamental aspects of linear wave phenomena, in
particular the propagation of light waves in transparent media. Because of their intuitive appeal
and the similarities with optical waves, we will first discuss elastic waves in solids.

3.1 Elastic waves in solids

We consider oscillations due to elastic deformations of a solid. The fundamental field quantity
for such deformations is u(t, x), the displacement from the equilibrium position of a mass
element of the body. After the deformation, the squared distance between two neighboring
mass elements with equilibrium positions x and x + ∆x will be given by

(∆x′i)2 =
(

∆xi +
∂ui

∂xk
∆xk

)2

= (∆xi)2 +
(

∂ui

∂xk
+

∂uk

∂xi

)
∆xi∆xk +

∂ui

∂xk

∂ui

∂xr
∆xk∆xr. (3.1)

For small absolute deformations, the relative deformations will also be small and we have
∂ui/∂xk � 1, and we can neglect the last term in the eq. (3.1). Hence, the distortions are
described by the symmetric tensor

uik = 1
2 (∂iuk + ∂kui). (3.2)

Instead of ∂/∂xi, we will often write simply ∂i. (For Cartesian coordinates, the position of
the indices is irrelevant, and we can position the indices freely.)

In order to derive the equation of motion for small elastic deformations, we start from the
Lagrangian density

L = T − U ,

where the kinetic energy density is given by

T = 1
2 u̇rMrsu̇

s = 1
2 u̇ · M u̇, (3.3)

and the density of the potential energy by

U = 1
2∂iu

r Kij
rs ∂ju

s = 1
2∂iu · Kij ∂ju. (3.4)
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Here, M and Kij are constant 3 × 3 matrices, which should satisfy the condition that the
potential energy density is positive semidefinite. The quadratic ansatz for the potential energy
density also takes into account the following aspects:

(a) Translational invariance: it is not the displacement ui itself that enters the equations but
the relative displacement ∂iuj .

(b) Hooke’s law: for small displacements, the elastic stress is proportional to the distortion.

In complete analogy to the Hamiltonian principle in classical mechanics with finitely many
degrees of freedom, where one starts from a Lagrange function L(q, q̇) and an action func-
tional S[q] =

∫
dt L(q, q̇), we also obtain in this case the equation of motion from the La-

grange density L by a variation of the action functional

S[u] =
∫

dt

∫
d3xL(u, u̇, ∂iu). (3.5)

The variation of S[u] yields

δS[u] =
∫

dt

∫
d3x

{
∂L
∂u

δu +
∂L
∂u̇

δu̇ +
∂L

∂∂iu
δ∂iu

}
=

∫
dt

∫
d3x

{
∂

∂t

(
∂L
∂u̇

δu

)
+ ∂i

(
∂L

∂∂iu
δu

)
+

(
∂L
∂u

− ∂

∂t

∂L
∂u̇

− ∂i
∂L

∂∂iu

)
δu

}
.

With the help of Gauss’s formula we can convert the first two terms in the integral to boundary
terms. The requirement that the solution should be a stationary point of the action leads to the
equation of motion:

∂

∂t

∂L
∂u̇

+ ∂i
∂L

∂∂iu
− ∂L

∂u
= 0. (3.6)

Like in classical mechanics, we can derive the conservation of energy as long as L does
not explicitly depend on time. Indeed, from

∂

∂t
L(u, u̇, ∂iu) =

∂L
∂u

u̇ +
∂L
∂u̇

ü +
∂L

∂∂iu
∂iu̇,

and using the equation of motion (3.6), we obtain

∂

∂t
L =

(
∂

∂t

∂L
∂u̇

)
u̇ +

∂L
∂u̇

ü +
(

∂i
∂L

∂∂iu

)
u̇ +

∂L
∂∂iu

∂iu̇

=
∂

∂t

(
∂L
∂u̇

u̇

)
+ ∂i

(
∂L

∂∂iu
u̇

)
.

Hence

∂

∂t

(
∂L
∂u̇

u̇ − L
)

+ ∂i

(
∂L

∂∂iu
u̇

)
= 0, (3.7)
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from which we can read off the energy density

ρE =
∂L
∂u̇

u̇ − L (3.8)

and the energy current density

Si =
∂L

∂∂iu
u̇. (3.9)

If L = T − U is given by eqs. (3.3) and (3.4), the equation of motion reads

Mrsü
s − ∂iK

ij
rs ∂ju

s = Mrsüs − ∂iσ
i
r = 0. (3.10)

The components of the elastic stress tensor σi
r are equal to the rth component of the force onto

a surface with a normal vector pointing in direction i:

σi
r =

∂U
∂∂iur

= Kij
rs ∂ju

s. (3.11)

For the energy density we find

ρE = 1
2 u̇ · M u̇ + 1

2∂iu · Kij ∂ju = T + U , (3.12)

and for the energy current density

Si = u̇ · Kij ∂ju. (3.13)

Written in matrix notation, the equation of motion becomes

M ü − Kij ∂i∂ju = 0. (3.14)

This is a generalized wave equation, for which we find solutions in the form of plane waves
by making the following ansatz:

u(t, x) = v e−i(ωt−k·x) (v ∈ C
3). (3.15)

Inserting this ansatz into the equation of motion leads to an eigenvalue equation

(Kij kikj − Mω2)v = 0,

det(Kij kikj − Mω2) = 0.
(3.16)

The following properties of the solutions can be read off immediately:

(a) The eigenfrequencies ωα(k) (α = 1, 2, 3) are, as a function of k, homogeneous of first
order, i.e. ωα(λk) = λωα(k) for λ > 0.

(b) We can choose the components of the corresponding eigenvectors vα(k) to be real num-
bers, i.e. for an eigen-oscillation, u(t, x) points into a fixed direction. For vα(k) and
vβ(k) we find an orthogonality relation: vα(k) · Mvβ(k) = 0 for α �= β.
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The most general solution to the wave equation can be expressed as a superposition of
eigenfunctions:

u(t, x) =
∑
α

∫
d3k [Aα(k) eiωα(k)t + Bα(k) e−iωα(k)t]vα(k) eik·x, (3.17)

where Aα(k), Bα(k) ∈C.
If the functions Aα(k) and Bα(k) are distributed around some mean value k0 with vari-

ance |∆k|, the solution separates into three wave packets whose centers move with (in general
different) group velocities

wα = ∇ωα(k)
∣∣∣
k=k0

. (3.18)

Furthermore, wα is the average flux velocity 〈S〉/〈ρE〉 for the energy of a solution. Indeed,
from

Kijkikjvα(k) = Mω2
αvα(k),

one obtains, after taking the derivative with respect to ki and scalar multiplication with vα(k),
the following expectation values:

〈
Si

〉
= 1

2ωαvα · Kijkjvα = 1
4ωα

∂ω2
α

∂ki
vα · Mvα = 1

2ω2
αwαivα · Mvα (3.19)

and

〈ρE〉 = 1
4ω2

αvα · Mvα + 1
4vα · Kijkikjvα = 1

2ω2
αvα · Mvα. (3.20)

3.2 Isotropic elastic media

Within Hooke’s approximation, the density of the potential energy of a deformed solid is a
quadratic function of the quantities

uik = 1
2 (∂iuk + ∂kui),

which implies that it has the form

U = 1
2λirjsuirujs, (3.21)

where the coefficients λirjs are subject to the symmetry relations:

λirjs = λrijs = λirsj = λjsir. (3.22)

If we combine the symmetric pairs of indices, (i, r) and (j, s), into indices A and B, we obtain
a symmetric matrix λAB of elasticity coefficients, where A and B can assume six different
values. A symmetric 6 × 6 matrix can have 21 independent elements, so, in general, there are
21 elasticity coefficients.
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For an isotropic solid, U should be rotationally invariant and the number of independent
elasticity coefficients reduces to two:

U =
λ

2
(uii)2 + µuikuik =

λ

2

(∑
i

uii

)2

+ µ
∑
i,k

uikuik. (3.23)

If we distinguish volume-changing and volume-preserving deformations, we may also write

uij = uij − 1
3δijukk + 1

3δijukk = ũij + 1
3δijukk,

U = 1
2κ(uii)2 + µũikũik,

(3.24)

with κ = λ + 2
3µ. The coefficients λ and µ are called Lamé coefficients. The condition

U ≥ 0 implies µ ≥ 0 and κ = λ + 2
3µ ≥ 0. (3.25)

The elastic stress tensor follows from δU = σikδuik:

σik = κurrδik + 2µ(uik − 1
3δikurr). (3.26)

In particular, we find

σii = 3κuii.

Solving for the relative displacements we get

uik =
1
9κ

δikσrr +
1
2µ

(
σik − 1

3
δikσrr

)
. (3.27)

This is Hooke’s law for an isotropic medium.
We find the relation between λ, µ and the well-known elasticity moduli by considering

special types of deformations, for example the following:

(a) Homogeneous compression (σik = pδik):

uik =
1
3κ

σrrδik

and

urr =
δV

V
=

1
κ

σrr, (3.28)

hence κ is the bulk modulus.

(b) Shearing (σ12 = σ21 = p, σik = 0 otherwise):

u12 = u21 =
1
2

sin α =
1
2µ

p, uik = 0 const. (3.29)

where α is the shear angle and µ turns out to be the shear modulus.
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(c) One-sided expansion (σ11 = p, σik = 0 otherwise):

u11 =
∆l

l
=

(
1
9κ

+
1
3µ

)
p =

1
E

p,

u22 = u33 =
(

1
9κ

− 1
6µ

)
p.

(3.30)

Hence, E = [(1/9κ) + (1/3µ)]−1 is Young’s modulus, and the shear contraction
σ = −u22/u11 is given by

σ =
1
2

3κ − 2µ

3κ + µ
. (3.31)

Hence, from κ, µ ≥ 0 it follows that: −1 ≤ σ ≤ 1/2. In practice, we even have σ ≥ 0, which
implies 3λ = 3κ − 2µ ≥ 0.

A straightforward calculation leads from eq. (3.10) to the wave equation for an isotropic
elastic medium. If we assume the following simple form for the kinetic energy density,

T = 1
2ρu̇2, (3.32)

we obtain

ρüi − ∂kσki = 0,

hence

ρüi − λ∂i∂kuk − 2µ∂kuki = 0, (3.33)

i.e.

ρü − (λ + µ)∇(∇ · u) − µ∆u = 0. (3.34)

The exponential ansatz u(t, x) = v e−i(ωt−k·x) leads to the eigenvalue equation

[µk2δij + (λ + µ)kikj − ρω2δij ]vj = 0, (3.35)

from which we can determine the following eigenvalues and eigenvectors:

• Transverse oscillations (v1,2 orthogonal to k)

ω1,2 =
√

µ

ρ
k, with phase velocity ct =

ω1,2

k
=

√
µ

ρ
. (3.36)

• Longitudinal oscillations (v3 collinear to k)

ω3 =

√
λ + 2µ

ρ
k, with velocity cl =

√
λ + 2µ

ρ
. (3.37)

From λ, µ ≥ 0, we obtain the following inequality for the propagation velocities of the longi-
tudinal and transverse waves:

cl ≥
√

2 ct. (3.38)

Indeed, seismograph measurements of earthquakes detect longitudinal waves first.
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3.3 Wave surfaces and ray surfaces

Now we return to the general wave equation (3.14). For fixed ω, the eigenvalue equation
(3.16),

f(ω, k) = det(Kijkikj − Mω2) = 0, (3.39)

can be interpreted as an equation for the wave vector k. This leads to a surface in R
3 which,

for elastic waves, consists generally of three shells, because for each k there exist three eigen-
frequencies ωα (α = 1, 2, 3). From

∇f(ωα(k), k) =
∂f

∂ω
∇kωα(k) + (∇kf)(ωα(k), k) = 0, (3.40)

we can deduce that the three group velocity vectors, wα = ∇kωα, are orthogonal to this
surface. Frequency ω(k) is a homogeneous function of first order in k, i.e.

k · ∇kω(k) = ω(k) or

k c

ω
· w

c
= n · s = 1,

(3.41)

where we have introduced some reference velocity c such that the vectors n and s become
dimensionless. The physical interpretation of n and s is the following:

• The vector n = k c/ω points in the direction of the wave vector k, and its absolute value
is given by |n| = kc/ω = c/cp, where cp is the velocity (to be more precise, the phase
velocity) of the wave corresponding to k (and ω(k)). This ratio of velocities is called the
refractive index (or index of refraction) and n is a vector that tells us the refractive index
for the corresponding directions of k. The surface defined by

g(ω, n) = det(Kijninj − Mc2) = 0 (3.42)

is called the wave surface. As ω(k) is a homogeneous function of order 1 in k, g(ω, n)
does not depend on ω.

• The vector s = w/c is called the ray vector. It is parallel to the normal vector of the
wave surface, (∇ng)(ω, n), and normalized by the condition n · s = 1. We have seen
that, for elastic media, cs is the group velocity and also the velocity of the energy flux,
which in general is not collinear to the direction of k.

If we choose some point in 0 ∈ R
3 and draw, for a fixed frequency ω, the corresponding

ray vectors s for any direction, we obtain a multi-shelled surface,

h(ω, s) = 0,

the so-called ray surface. The ray surface describes the flux of energy for all directions,
i.e. it represents the form of wave fronts that would result from a point-like disturbance at
the origin 0. By definition, s is perpendicular to the wave surface and n·s = 1. Therefore,
we obtain the ray surface from the wave surface by a simple geometrical construction (see
fig. 3.1). For each point n on the wave surface, we draw the tangent plane, construct the
line perpendicular to this plane through the center of the wave surface, and normalize this
line such that n · s = 1.
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Figure 3.1: Construction of the ray
surface from the wave surface.

Wave surface and ray surface are “dual” to each other: the above construction applied to
the ray surface leads back to the wave surface. For a proof of this statement, we consider the
variation δn of some n along the wave surface. Hence, δn is tangent to the wave surface and
by definition of s we have s · δn = 0. On the other hand, from n · s = 1 we obtain

s · δn + n · δs = n · δs = 0, (3.43)

which means that n is orthogonal to the ray surface. The normalization condition, n · s = 1,
is symmetric in n and s. Therefore, n may be constructed from the ray surface in the same
way as s from the wave surface.

Examples

1. For the one-component wave equation

1
c2

ü − Aij∂i∂ju = 0 (u(t, x) ∈R), (3.44)

where Aij is some symmetric positive definite matrix, the wave surface has the shape of
an ellipsoid:

f = Aijninj − 1 = 0. (3.45)

Because n ·s = 1, the ray vector si = α∇f = 2αAijnj is determined to be si = Aijnj ,
from which we get ni = A−1

ij sj , where A−1
ij is the inverse matrix of Aij . Hence, the ray

surface is given by

h = A−1
ij sisj − 1 = 0, (3.46)

which is the ellipsoid inverse to the wave surface. We can easily verify the interpretation
of the wave surfaces as an image of the shapes of the wave fronts, because the wave
equation (3.44) admits solutions of the form

u(t, x) =
g(R ∓ ct)

R
, (3.47)
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where R =
√

A−1
ij xixj , and g is an arbitrary function of one variable. In particular,

Gω(x) =
1√

detA

e(iω/c)R

R
(3.48)

satisfies the equation

(Aij∂i∂j + ω2/c2)Gω(x) = −4πδ(x).

2. The wave surface for an isotropic elastic medium follows from eqs. (3.35)–(3.37):

f(ω, n) =
(

n2 − c2

c2
l

) (
n2 − c2

c2
t

)2

= 0. (3.49)

This describes a sphere of radius nl = c/cl and a second sphere (which has to be counted
twice because the transverse waves are degenerate) of radius nt = c/ct. The ray surface
consists of spheres with radii sl = cl/c and st = ct/c.

In the following chapters we will meet further examples of wave surfaces and ray surfaces.
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4.1 The normal ellipsoid

In this chapter we will discuss the propagation of light in transparent isotropic and anisotropic
media, especially in crystals. Compared to electrical effects, we can neglect magnetic phe-
nomena and will always assume µik = δik, i.e. B = µ0H .

Under these conditions, the optical properties of a medium are determined by the permit-
tivity tensor εij(ω) = εji(ω). If absorption effects are negligible, εij(ω) is real and positive
definite; the same holds for the inverse tensor ε−1

ij (ω), with εij(ω)ε−1
jk (ω) = δik.

Associated with the tensor εij(ω) is the so-called Fresnel’s ellipsoid:

EF(ω) = {x ∈ R
3 | x · ε(ω)x = xiεij(ω)xj = 1}. (4.1)

Even more important for a visualization of the optical properties of a medium is the normal
ellipsoid or index ellipsoid, associated with the inverse tensor ε−1

ij (ω):

EN(ω) = {x ∈ R
3 | x · ε−1(ω)x = 1}. (4.2)

The electric energy density satisfies

ρel =
1
2
E · D =

ε0
2

E · ε(ω)E =
1

2ε0
D · ε−1(ω)D,

and therefore EF(ω) is equal to the set of all vectors E for which ρel = ε0/2, and EN(ω) is
equal to the set of all vectors D for which ρel = 1/(2ε0). The two ellipsoids are dual to each
other in the sense of chapter 3: the normal vectors on EF determine the direction of D, and
the normal vectors on EN determine the directions of E.

We can choose an orthogonal system of principal axes, for which εij(ω) and ε−1
ij (ω) be-

come diagonal:

εij(ω) = εi(ω)δij , ε−1
ij (ω) =

1
εi(ω)

δij . (4.3)

The eigenvalues εi(ω) are called principal values of the electric permeability. By convention
we let their labels increase with their values:

0 ≤ ε1(ω) ≤ ε2(ω) ≤ ε3(ω). (4.4)
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Adopting the principal axes as a basis, the equations for Fresnel’s ellipsoid and the normal
ellipsoid simplify significantly:

ε1(ω)x2 + ε2(ω)y2 + ε3(ω)z2 = 1,

and
x2

ε1(ω)
+

y2

ε2(ω)
+

z2

ε3(ω)
= 1.

(4.5)

The axes of these ellipsoids have lengths 1/
√

ε1(ω), 1/
√

ε2(ω), 1/
√

ε3(ω), and
√

ε1(ω),√
ε2(ω),

√
ε3(ω), respectively (see fig. 4.1).

Figure 4.1: Circular cuts through an ellipsoid.

In general, not only the principal values εi(ω) but also the directions of the principal axes
depend on the frequency; in this case we speak of a dispersion of the axes.

However, if certain directions are distinguished due to the symmetry of the crystal lattice,
the principal axes are fixed; and two of the principal values are equal if the crystal lattice is
invariant under rotations around some axis with an angle Θ �= 180◦. According to increasing
symmetry, one distinguishes seven crystal systems, for which the details are summarized in
table 4.1.

The notations for the principal axes are as follows:

G dispersion of the axis: this is the general case; the direction of the axis depends on the
frequency;

F fixed axis: the direction of the axis does not depend on the frequency;

D degeneracy: there are at least two axes of equal length; due to the degeneracy, the direc-
tions of these axes are to a certain degree arbitrary, but the space spanned by the axes of
equal length is fixed.

In addition, Table 4.1 names the symmetry of the translational lattice and the shape of the
normal ellipsoid.

We shall soon need to investigate intersections of the normal ellipsoid with planes through
the center. The intersection of an ellipsoid E, given by

x2

A2
1

+
y2

A2
2

+
z2

A2
3

= 1, A1 ≤ A2 ≤ A3,

with a plane H : m1x + m2y + m3z = 0 is an ellipse with principal axes a1 ≤ a2. The
lengths of the principal axes of this ellipse can be identified as the extremal points of the
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Table 4.1: Crystal systems and their normal ellipsoids.

Crystal system Symmetry of the lattice Principal
axes of εij

Normal
ellipsoid

Triclinic General parallelepiped G G G Unequal
axes

Monoclinic Parallelepiped with one edge
orthogonal to a parallelogram

F G G Unequal
axes

Orthogonal
= orthorhombic

Rectangular parallelepiped F F F Unequal
axes

Trigonal Cube, stretched along a diagonal
direction of a body

F D D Rotational
ellipsoid

Tetragonal Rectangular parallelepiped with
quadratic base

F D D Rotational
ellipsoid

Hexagonal Hexagonal-prismatic F D D Rotational
ellipsoid

Cubic Cube D D D Sphere

central distance functional restricted to an i-dimensional subspace R
i:

Ai = min
Ri

max
x∈Ri∩E

|x| = max
R4−i

min
x∈R4−i∩E

|x|
ai = min

Ri ⊂H
max

x∈Ri∩E∩H
|x|. (4.6)

From this representation we can easily verify that

A1 ≤ a1 ≤ A2 ≤ a2 ≤ A3. (4.7)

Of special importance in optics are those intersection planes for which the intersection with
the normal ellipsoid is a circle. The normal vectors for these planes are called optic axes.

From inequality (4.7) we deduce for circular intersections: a1 = a2 = A2. The orientation
of such planes can be obtained by calculating the intersection of the ellipsoid

x2

A2
1

+
y2

A2
2

+
z2

A2
3

= 1

with the sphere

x2 + y2 + z2

A2
2

= 1.

Taking the difference of these two equations gives

x2

(
1

A2
1

− 1
A2

2

)
= z2

(
1

A2
2

− 1
A2

3

)
.
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So the planes with a circular intersection contain the 2-direction, and the angle θ between their
normal vectors and the 3-direction is given by

tan θ = ±
√

1/A2
1 − 1/A2

2

1/A2
2 − 1/A2

3

. (4.8)

For the general case A1 < A2 < A3, there are two circular intersections that are mirror
images of each other. For this reason, crystals with ε1 < ε2 < ε3 are called optically biaxial
(see fig. 4.1).

If at least two of the principal axes have equal length, the two circular intersections coin-
cide. Crystals for which ε1 = ε2 < ε3 or ε1 < ε2 = ε3 are called optically uniaxial. Finally,
for a sphere, all intersections are circular. According to our crystal classification in table 4.1,
the crystals belonging to the first three systems are biaxial, those belonging to the fourth to
sixth systems are uniaxial, and the crystals belonging to the cubic system are identical to
completely isotropic substances with respect to their dielectric properties.

4.2 Plane waves in crystals

We consider Maxwell’s equations (2.76) for ρ ≡ 0 and j ≡ 0 and make an exponential ansatz
for the quantities E, D, B, and H :

E = E0 exp[−i(ωt − k · x)], . . . .

Furthermore, we assume that µik = δik, i.e. B = µ0H , and obtain

n · B0 = 0, n · D0 = 0, (4.9)

n × E0 = cκB0, n × H0 = −cκD0. (4.10)

Here, n = (c/ω)k is the vector of the refractive index defined in chapter 3, and the first two
equations follow from the last two. For convenience, we will suppress the lower index “0” in
E0, D0, B0, and H0. Eliminating B yields

n × (n × E) = cκn × B = −c2κ2µ0D = n(n · E) − n2E. (4.11)

Making use of Di = εik(ω)ε0Ek and c2κ2ε0µ0 = 1, we obtain the eigenvalue equation

[n2δik − nink − εik(ω)]Ek = 0. (4.12)

The equation for the wave surface is now given by

f(ω, n) = det[n2δik − nink − εik(ω)] = 0. (4.13)

Due to the frequency dependence of εik, ω will no longer be homogeneous in k.
Although our arguments are easily generalized to the case of complex εik, we shall restrict

ourselves to the most important case of negligible absorption, i.e. real εik(ω) = εki(ω).
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Under these conditions, we may choose the eigenvector components E
(α)
k of the eigen-

value equation to be real-valued, which, remarkably, implies linearly polarized eigenwaves.
Setting Ek = (1/ε0)ε−1

kj Dj , the eigenvalue equation assumes the equivalent form

[n2ε−1
ik (ω) − ninrε

−1
rk (ω) − ε−1

ir (ω)nrnk − δik]Dk = 0. (4.14)

We have added an extra term ε−1
ir nrnkDk, which vanishes since n · D = 0. In this way we

may choose the matrix, for which we search the eigenvectors, to be symmetric, which implies
that different eigenvectors D(α) and D(β) are mutually orthogonal.

In order to determine the ray surface, we first prove that the average value of the Poynting
vector,

〈S〉 =
1
2κ

E × H , (4.15)

is perpendicular to the wave surface. Indeed, taking the variation of Maxwell’s equations
(4.10),

κc δD = δH × n + H × δn,

κc δB = δn × E + n × δE,

and inserting Maxwell’s equations once more, we obtain

κc(E · δD + H · δB) = κc(B · δH + D · δE) + 2δn · (E × H).

From the symmetry of εik we can conclude that E · δD = D · δE. Furthermore, because
B = µ0H , we have H · δB = B · δH , and, therefore,

δn · (E × H) = 0. (4.16)

Now we prove that the vector for the energy flux velocity divided by c,

s =
〈S〉
〈ρE〉c , (4.17)

with

〈ρE〉 = 1
4 (E · D + H · B), (4.18)

satisfies the normalization condition s ·n = 1. Therefore, it is equal to the ray vector. Indeed,
from eqs. (4.9) and (4.10) we find

κc E · D = E · (H × n) = n · (E × H),
κc H · B = (n × E) · H = n · (E × H),

from which we get s · n = 1. As a side result we see that also for anisotropic media, in the
average, the electric and magnetic energies of plane waves are equal. From the equality

s =
1
κc

1
E · D E × H =

1
κc

1
B · H E × H, (4.19)



60 4 Crystal optics

we obtain

s · H = 0, s · E = 0,

s × D =
1
κc

H , s × B = − 1
κc

E.
(4.20)

Comparison with Maxwell’s equations reveals that the wave surface and the ray surface are
related by the following exchanges:

n ↔ s, B ↔ H, E ↔ D, εik ↔ ε−1
ik . (4.21)

The relative orientations of the vectors E, D, n, s, and B for a plane wave may be
illustrated in a simple diagram (see fig. 4.2). According to what we have just derived, E, D,
s, and n are perpendicular to B and, therefore, lie in the same plane. Furthermore, n and D
are mutually orthogonal; the same holds for s and E.

Figure 4.2: Relative orientations of the vectors B,
H , E, D, n, and s.

Notice that, in general, in an anisotropic medium the vector perpendicular to the wave
vector k is no longer E but D.

Now we want to study the eigenvalue problem for plane waves in crystals in more detail.
In this context it will turn out to be useful to choose the coordinate axes along the directions
of the principal axes of εik(ω). The corresponding equation for the wave surface follows after
a short calculation:

0 = f(ω, n) = det[n2δij − ninj − εij(ω)]
= n2(ε1n2

1 + ε2n
2
2 + ε3n

2
3) (4.22)

− {n2
1ε1(ε2 + ε3) + n2

2ε2(ε1 + ε3) + n2
3ε3(ε1 + ε2)} + ε1ε2ε3.

This equation is of second order and not, as one might suspect from a 3 × 3 determinant, of
third order in the quantities n2

i . The technical reason for this behavior is the degeneracy of
the matrix n2δij − ninj . The wave surface contains only two shells due to the fact that an
electromagnetic wave can only have two independent polarization directions.

For n fixed, there exist two, in general different, frequencies; and for fixed ω and given
direction of the wave vector k, there exist two values for the refractive index |n|. An exception
are the double points where the two shells of the wave surface intersect and the two values of
the refractive index for a given direction of k coincide.
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To determine the polarization directions of the eigenwaves, we start from the eigenvalue
equation (4.14) for D:

n2ε−1(ω)D − n[n · ε−1(ω)D] = D. (4.23)

We know that n ·D = 0, so the components of D lie in the plane perpendicular to n. Let P⊥
be the orthogonal projection onto this plane, i.e. P⊥(D) = D⊥ = D, and P⊥(n) = 0. We
apply P⊥ to the eigenvalue equation (4.23) and obtain the new eigenvalue equation

[P⊥ε−1(ω)P⊥]D⊥ =
1
n2

D⊥. (4.24)

Introducing a basis (eα)α=1,2 in the plane perpendicular to n, we may write this equation in
the form(

ε−1
αβ(ω) − 1

n2
δαβ

)
Dβ = 0. (4.25)

The (mutually orthogonal) eigenvectors of this equation are the polarization vectors of the
eigenwaves. Equation (4.24) admits a nice interpretation in terms of the normal ellipsoid,

D · ε−1(ω)D = 1.

If we restrict this equation to vectors D⊥ orthogonal to n⊥, i.e. if we intersect the normal
ellipsoid with the plane n · D = 0, we obtain the following equation for an ellipse:

D⊥ · P⊥ε−1(ω)P⊥D⊥ = 1.

The principal axes of this ellipse are determined by the eigenvalue equation (4.24),

[P⊥ε−1(ω)P⊥]D⊥ =
1
n2

D⊥.

After scalar multiplication with D⊥, and using the equation for the ellipse, we see that the
eigenvalues n are equal to the lengths of the principal axes of this ellipse.

We can now summarize the construction of the polarization vectors D and the correspond-
ing refractive indices for an eigenwave propagating along a given direction n/|n| = k/|k|
with frequency ω (see fig. 4.3): Determine the intersection of the normal ellipsoid with the
plane perpendicular to n. The orientations of the principal axes of the resulting ellipse are
equal to the directions of the polarizations of the eigenwaves, and the lengths of these axes
yield the corresponding indices of refraction. From the normal ellipsoid we can also construct
the vectors E and s corresponding to the polarization vector D: E is perpendicular to the
normal ellipsoid at point D; s lies in the plane spanned by n, D, and E, is orthogonal to E,
and is normalized by s · n = 1.

If we replace the normal ellipsoid by Fresnel’s ellipsoid, E · ε(ω)E = 1, and n by s, we
first obtain the ray vectors s and the polarization vectors E of the eigenwaves, and in a second
step the vectors D and n.

Of special importance are those directions n/|n| for which the sections with the normal
ellipsoid are circles; these are the optic axes. In this case, the polarization vector D may be
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Figure 4.3: Construction of the eigensolutions using the
normal ellipsoid.

chosen arbitrarily in the plane perpendicular to n, and for a given orientation of n, we only
have one value for the refractive index, n =

√
ε2 (ε1<ε2<ε3). Obviously, these special vectors

n correspond to the double point on the wave surface where the two shells of the surface
intersect. According to section 4.1, there are no more than two optic axes for the non-cubic
case. Therefore, these two shells of the wave surface intersect at one or two pairs of diametric
points, and not, as one might suspect, along a one-dimensional curve.

Similar relations hold for the ray vector and the ray surface.
If we allow εij(ω) to be complex, the eigen-directions D(α) are also complex and the

eigenwaves are elliptically polarized. One can show that in this case there are no self-intersec-
tions of the wave surface. However, if Im εij � Re εij , the polarization ellipses are stretched
to a very oblong shape, almost like a line, and for certain directions the two shells of the wave
surface approach each other closely.

In the following two sections we will discuss in more detail the propagation of light in
isotropic crystals that are optically uniaxial or biaxial. The most important results that we will
encounter in this context are summarized in table 4.2.

4.3 Optically uniaxial crystals

In the cubic case, εij = ε(ω)δij , the equation for the wave surface, eq. (4.22), degenerates to

εn4 − 2ε2n2 + ε3 = ε(n2 − ε)2 = 0, (4.26)

and we obtain a sphere that counts twice. The refractive index n =
√

ε is independent of the
polarization and the direction of propagation, and the ray vector s = n/n2 is always parallel
to n. There exist also eigenwaves with circular and elliptical polarization.

More complicated, but also more interesting, is the case of optically uniaxial crystals,
ε1 = ε2 = ε⊥. Such a crystal is called positive if ε3 > ε⊥, and negative for ε3 < ε⊥ (see
fig. 4.4). The normal ellipsoid is a ellipsoid of revolution, and the 3-axis coincides with the
optic axis. The wave surface (4.22) simplifies to

n2(ε⊥n2
⊥ + ε3n

2
3) − {ε⊥(ε3 + ε⊥)n2

⊥ + 2ε3ε⊥n2
3} + ε2⊥ε3

= (n2 − ε⊥)(ε⊥n2
⊥ + ε3n

2
3 − ε⊥ε3) = 0, (4.27)

where n2
⊥ = n2

1 + n2
2. This corresponds to a sphere of radius

√
ε⊥ together with a circum-

scribed or inscribed ellipsoid of revolution with axis lengths 1/
√

ε3, 1/
√

ε3, and 1/
√

ε⊥.
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Table 4.2: Properties of isotropic and anisotropic crystal systems.

Isotropic Anisotropic

Uniaxial Biaxial

Crystal
systems

Cubic Trigonal, tetragonal,
hexagonal

Orthorhombic, mono-
clinic, triclinic

Polarization
of eigen-
waves

Arbitrary elliptic
polarization

Only linear polarization,
except for n parallel to
the optic axis

Only linear polarization,
except for n parallel to
one of the two optic axes

Ray
vector s

Normal propa-
gation of light:
s is always parallel
to n

Generically, one ordinary
ray with s parallel to n and
polarization orthogonal to
the principal plane and one
extraordinary ray: s is not
parallel to n, polarization
in the principal plane

Generically, two extra-
ordinary rays, s is not
parallel to n

Refraction Snell’s law of
refraction holds

Generically, double refrac-
tion; one ordinary ray
satisfying Snell’s law of
refraction, and one extra-
ordinary ray, violating
Snell’s law of refraction

Generically, double refrac-
tion; two extraordinary rays
both violating Snell’s law;
conical refraction if n is
parallel to an optic axis

The waves corresponding to the sphere and the ellipsoid are called ordinary and extra-
ordinary waves, respectively, and we also talk about ordinary and extraordinary rays. For the
ordinary ray, s is always parallel to n, like in the isotropic case, while for the extraordinary
ray, s and n have different directions.

The plane spanned by the optic axis e3 and the vector of the refractive index n is called the
principal section. The polarizations of the ordinary and extraordinary waves can be deduced
from the construction of the normal ellipsoid, as described in the previous section. The normal
ellipsoid is an ellipsoid of revolution with axis lengths

√
ε⊥,

√
ε⊥, and

√
ε3. The section of

the normal ellipsoid with an arbitrary plane through the center yields an ellipse perpendicular
to n. The length of the axis perpendicular to the principal section is always n =

√
ε⊥; the

other axis of the ellipse lies within the principal section.

As one might expect from symmetry considerations, the polarization of the ordinary wave
is perpendicular to the principal section, while that of the extraordinary wave is parallel to
the principal section. These statements may also be derived analytically from the following



64 4 Crystal optics

Figure 4.4: Wave surfaces for positive and negative optically uniaxial crystals.

representation of the eigenvalue problem (4.14) for D: (n2
1 − n2)/ε⊥ + 1 0 0

0 (n2
2 − n2)/ε⊥ + 1 0

0 0 (n2
3 − n2)/ε3 + 1


D1

D2

D3

 = 0.

For the ordinary ray we have s = n/ε⊥. Without loss of generality, we can place n into
the 1–3 plane and obtain, from the equation for the wave surface, for the extraordinary ray

n2
3

ε⊥
+

n2
1

ε3
= 1. (4.28)

Because s is perpendicular to the wave surface and s · n = 1, we obtain

s1 =
n1

ε3
, s3 =

n3

ε⊥
, (4.29)

such that

tanβ =
n1

n3
=

ε3
ε⊥

tanβ′ =
ε3
ε⊥

s1

s3
, (4.30)

where β and β′ are the angles between the optic axis e3 and n and s, respectively. Further-
more,

1
n2

=
cos2 β

ε⊥
+

sin2 β

ε3
. (4.31)

We should comment on the following special cases:

1. n parallel to the optic axis. The principal section degenerates to a straight line; the or-
dinary and extraordinary waves have the same phase velocity c/

√
ε⊥ and the same ray

vector s = e3/
√

ε⊥. There exist elliptically polarized eigenwaves and, for a linearly
polarized wave, the orientation of the polarization remains unchanged.
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2. n orthogonal to the optic axis. For the ordinary and the extraordinary rays we have:
no =

√
ε⊥, ne =

√
ε3, so = n/ε⊥, and se = n/ε3. The ordinary and the extraordinary

rays have the same direction but differ with respect to their group and phase velocities.
An initially linearly polarized wave will, in general, become elliptically polarized due to
the different propagation velocities of the two polarization components within the crystal.

In general, so and se are not parallel. For a fixed orientation of n and fixed ω there exist two
rays. When a ray with given wave vector k hits the surface of an anisotropic crystal, there will,
in general, appear two refracted rays. This phenomenon is called double refraction.

4.4 Optically biaxial crystals

For the case of optically biaxial crystals with ε1 < ε2 < ε3, the wave surface is more com-
plicated. We may visualize its form by calculating its intersection with the coordinate planes.
So, in eq. (4.22),

n2(ε1n2
1 + ε2n

2
2 + ε3n

2
3) − n2

1ε1(ε2 + ε3) − n2
2ε2(ε1 + ε3)

− n2
3ε3(ε1 + ε2) + ε1ε2ε3 = 0,

we set n1 = 0, n2 = 0, and n3 = 0, one by one. For example, the intersection with the 1–2
plane is given by

n2(ε1n2
1 + ε2n

2
2) − n2

1ε1(ε2 + ε3) − n2
2ε2(ε1 + ε3) + ε1ε2ε3

= (n2 − ε3)(ε1n2
1 + ε2n

2
2 − ε1ε2) = 0. (4.32)

Hence, the intersection consists of a circle and an ellipse. Because of the ordering ε1 < ε2 <
ε3, the ellipse lies inside the circle for n3 = 0. For n1 = 0 the circle lies inside the ellipse;
and for n2 = 0 the ellipse and the circle intersect at two opposite pairs of points (see fig. 4.5).

Figure 4.5: Wave surfaces for optically bi-
axial crystals.

These intersection points are just the four double points of the wave surface, and the cor-
responding directions (in the 1–2 plane) are just the optic axes of the crystal, for which the
intersections with the normal ellipsoid x2/ε1 + y2/ε2 + z2/ε3 = 1 consist of circles and the
two eigenvalues are degenerate. Indeed, the intersection of

n2
1

ε2
+

n2
3

ε2
= 1 and

n2
1

ε3
+

n2
3

ε1
= 1
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yields

n2
1

(
1
ε2

− 1
ε3

)
= n2

3

(
1
ε1

− 1
ε2

)
,

i.e.

n1

n3
= tan θ = ±

√
1/ε1 − 1/ε2
1/ε2 − 1/ε3

= ±
√

ε3(ε2 − ε1)
ε1(ε3 − ε2)

, (4.33)

which agrees with the result obtained in section 4.1.
The shells of the ray surfaces intersect transversely only at isolated points. Therefore, in

the vicinity of the intersection points, they are cone-like such that the tips of the two cones
coincide. The orientations of the ray vectors are given by the normal directions of the wave
surface. As fig. 4.5 illustrates, there are infinitely many ray vectors that correspond to the
singular vector nA that sits at the double points and is directed towards the optic axis. All
these ray vectors lie on the surface of the cone. The optic axis nA itself lies on this surface,
and, because of the degeneracy of the eigenmodes under rotations around the optic axis, the
intersection curve of this ray cone with a plain perpendicular to the vector nA has to be a
circle. This agrees with the construction, described in section 4.2, of the vector s from the
normal ellipsoid, if the intersection is circular. The projection of the ray cone onto the 1–3
plane is shown in fig. 4.5. In this plane the two ray vectors are

s(1) =
1
ε2

(n1, n3) and s(2) =
(

n1

ε3
,
n3

ε1

)
. (4.34)

From this representation we easily obtain the cone angle in the 1–3 plane. For an optically
uniaxial crystal, the ray cone degenerates into a single ray.

The non-uniqueness of ray vectors for a given normal vector nA leads to the remarkable
phenomenon of inner conical refraction, which may be phrased as follows (see also fig. 4.6,
left): Suppose we are given a biaxial crystal whose surface is cut perpendicular to its optic
axis nA. A thin ray of unpolarized light hits the surface of this crystal parallel to nA. In this
case the wave vector will be parallel to nA also inside the crystal, and there will be a whole
cone of corresponding ray vectors. The light leaving the crystal at the opposite side will be
concentrated along the surface of a circular cylinder.

There also exists the phenomenon of outer conical refraction: The ray surface consists of
two shells and a whole cone of wave vectors corresponds to the exceptional direction sA (see
fig. 4.6, right).

4.5 Reflection and refraction at interfaces

The phenomena of reflection and refraction, which may occur when an arbitrary, not nec-
essarily electromagnetic, wave hits the interface between two different media, can be quite
complicated, in particular for non-isotropic media. We shall first derive a general idea of the
phenomena that we might expect.
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Figure 4.6: (Left) Principle of inner conical refraction. (Right) Principle of outer conical refrac-
tion.

As the incoming waves consist, in general, of a thin ray bundle which hits the interface
only in the vicinity of a point, we may, for simplicity, assume the interface to be flat with
normal vector N . Furthermore, any ray bundle can be interpreted as a superposition of plane
waves.

Therefore, without loss of generality, we represent the incoming wave as a plane eigen-
wave vα exp[i(k · x − ωt)], which approaches the interface from medium 1.

The outgoing waves will then be linear combinations of eigenwaves. First, we want to de-
termine the possible frequencies and wave vectors (ω′

β , k′
β , ω′′

γ , k′′
γ) of the reflected waves, re-

turning into medium 1, and the refracted waves, entering medium 2, respectively (see fig. 4.7).

Figure 4.7: The different wave vectors
involved in the reflection and refraction
at the interface between media 1 and 2.

There are certain continuity conditions for the displacement of the waves that hold every-
where on the interface and for all times. As one might easily convince oneself, these conditions
are only fulfilled if for all waves the frequencies as well as the longitudinal components, which
are tangential to the interface, are equal:

ω = ω′
β = ω′′

γ

kl = k′
βl = k′′

γl

for all β, γ. (4.35)
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We still have to determine the transverse components (k′
βt and k′′

γt) of the wave vectors, which
are perpendicular to the interface.

The tips of the wave vectors in both media, 1 and 2, have to lie on the wave surface
corresponding to the frequency ω. If the wave surface has N shells, there are exactly N wave
vectors in each medium, i.e. k′

β (α = 1, . . . , N ) and k′′
γ (γ = 1, . . . , N ). Their tangential

components are given by kl and their components parallel to the normal N have the same
sign as the normal component kt of k in medium 2 and the opposite sign in medium 1.

Denoting the corresponding eigen-amplitudes in medium 1 and 2 with vα, vβ , and wγ , we
arrive at the following ansatz:

medium 1 u = vα exp[i(k · x − ωt)] +
N∑

β=1

Aαβvβ exp[i(k′
β · x − ωt)],

medium 2 u =
N∑

γ=1

Bαγwγ exp[i(k′′
γ · x − ωt)].

(4.36)

The coefficients Aα,β and Bα,γ can be determined from the continuity conditions along the
interface.

For some values of kl, it may happen that there are less than N eigenmodes with real
normal components k′′

t or k′
t. In this case the solution of the wave surface equation yields

complex values for k′
t or k′′

t , which correspond to exponentially decreasing waves. A famous
example of such a situation is the phenomenon of total reflection.

Because all the involved wave vectors share the same component parallel to the interface,
they are coplanar. In general, however, the corresponding ray vectors sα, s′

β , and s′′
γ are not

coplanar.
After these preliminary remarks, we now discuss the reflection and refraction of electro-

magnetic waves at an interface between two not necessarily isotropic media.
In this case the wave surface consists of two shells, i.e. N = 2, and for the general case we

would expect two reflected and two refracted rays. The continuity conditions at the interface
require the continuity of the tangential components of E and H :

N × (E1 − E2) = 0,

N × (H1 − H2) = 0,
(4.37)

as well as the continuity of the normal components of D and B:

N · (D1 − D2) = 0,

N · (B1 − B2) = 0.
(4.38)

Taking into account Maxwell’s equations, the continuity conditions (4.38) already follow
from (4.37):

k × E = κωB, k × H = −κωD. (4.39)

Scalar multiplication of these equations with N yields the required result.
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So, we are left with the continuity conditions of the tangential components of E and H .
They imply also that the normal component of the Poynting vector, S = (1/κ)E × H , is
continuous. Indeed, this follows also from physical reasons, as otherwise energy would be
accumulated in the interface.

Using Maxwell’s equations (4.39) as well as the material equations B = µ0µH and
D = ε0εE, we may express all other fields in terms of E (or H). Thus, we can try an ansatz
of the following type to solve the problem:

medium 1 E = eα exp[i(k · x − ωt)] +
2∑

β=1

Aαβe′
β exp[i(k′

β · x − ωt)],

medium 2 E =
2∑

β=1

Bαγe′′
γ exp[i(k′′

γ · x − ωt)].

(4.40)

Here eα, e′
β , and e′′

γ are polarization vectors.
For a fixed value of α, the four coefficients Aα,β and Bα,β can be calculated from the four

independent continuity conditions (4.37).
In this way we can determine the directions as well as the intensities of the reflected and

the refracted rays.

4.6 Fresnel’s equations

In this section we will explicitly perform the calculation for the simplest case where both
media are isotropic and free of absorption:

ε1ij = ε1δij , ε2ij = ε2δij , n1 =
√

ε1, n2 =
√

ε2.

We also assume that µ1
ij = µ2

ij = δij .
For this case the wave surfaces degenerate to spheres (counting twice), both eigenmodes

of oscillation are degenerate, and we have k′
1 = k′

2 =: k′ and k′′
1 = k′′

2 =: k′′. Furthermore,
the ray vectors corresponding to the wave vectors are parallel to k′ or k′′ (see fig. 4.8).

Figure 4.8: Reflection and refraction at
an interface between two isotropic and
absorption-free media 1 and 2.
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Since

kl = k′
l = k′′

l

and

|k| = |k′| = n1
ω

c
, |k′′| = n2

ω

c
, (4.41)

we obtain for

sin α =
|kl|
|k| , sin α′ =

|k′
l|

|k| , sin β =
|k′′

l |
|k|

the reflection law

α = α′ (4.42)

as well as Snell’s law of refraction

n1 sin α = n2 sin β. (4.43)

Furthermore, we obtain from (4.41)

k′
t = −kt,

k′′
t =

√
k′′2 − k2

l =
√

(n2
2/n2

1)k2 − k2
l = k

√
(n2

2/n2
1) − sin2 α.

(4.44)

For n1 > n2 there are no solutions of the condition n1 sin α > n2 with a real value of k′′
t : this

describes the case of total reflection at the interface in front of an optically thinner medium.
Finally, we calculate the ratios of intensities. For this purpose, we distinguish two cases:

1. Transverse polarization. The vector E of the incoming wave oscillates perpendicularly
to the so-called plane of incidence spanned by k and N . Hence, it oscillates parallel to
the interface. It turns out that in this case also the vectors E′ and E′′ of the refracted and
reflected waves are perpendicular to the plane of incidence. If we denote the components
of the electric field vectors that are perpendicular to the plane of incidence by E, E′, and
E′′, the continuity condition for the tangential component of the electric field vectors
reads

E + E′ = E′′. (4.45)

The vectors H , H ′, and H ′′ of the incoming, reflected, and refracted waves, respectively,
oscillate in the plane of incidence and orthogonal to their corresponding wave vectors.
Because of eq. (4.39), their lengths are given by

H =
1

µ0κω
kE =

n1

µ0κc
E,

H ′ =
n1

µ0κc
E′, H ′′ =

n2

µ0κc
E′′,

and the continuity of the tangential components of the magnetic field vector leads to the
condition

n1E cos α − n1E
′ cos α = n2E

′′ cos β. (4.46)



4.6 Fresnel’s equations 71

2. Polarization in the plane of incidence. The E vectors oscillate in the plane of incidence,
and the H vectors are orthogonal to the E vectors. In this case one finds for H , H ′, and
H ′′, as well as E = (µ0κc/n1)H , E′ = (µ0κc/n1)H ′, and E′′ = (µ0κc/n1)H ′′ the
continuity conditions

H + H ′ = H ′′,(
1
n1

H − 1
n2

H ′
)

cos α =
1
n2

H ′′ cos β.

Solving for E′ and E′′ yields, for the case of transverse polarization,

ρt =
E′

E
=

n1 cos α − n2 cos β

n1 cos α + n2 cos β
,

τt =
E′′

E
=

2n1 cos α

n1 cos α + n2 cos β
,

(4.47)

and, for the case of longitudinal polarization,

ρl =
E′

E
=

n2 cos α − n1 cos β

n2 cos α + n1 cos β
,

τl =
E′′

E
=

2n1 cos α

n2 cos α + n1 cos β
.

(4.48)

Equations (4.47) and (4.48) are called Fresnel’s equations.
For the Poynting vectors, we obtain the relations N · S ∼ EH cos α ∼ n1E

2 cos α,
N · S′ ∼ n1E

′2 cos α, and N · S′′ ∼ n2E
′′2 cos β, from which we can easily calculate the

reflection and transmission coefficients:

• E perpendicular to the plane of incidence

rt =
(

n1 cos α − n2 cos β

n1 cos α + n2 cos β

)2

=
sin2(α − β)
sin2(α + β)

tt =
4n1n2 cos α cos β

(n1 cos α + n2 cos β)2
=

sin 2α sin 2β

sin2(α + β)
.

(4.49)

• E in the plane of incidence

rl =
(

n2 cos α − n1 cos β

n2 cos α + n1 cos β

)2

=
(

sin 2α − sin 2β

sin 2α + sin 2β

)2

=
tan2(α − β)
tan2(α + β)

(4.50)

tl =
4n1n2 cos α cos β

(n2 cos α + n1 cos β)2
=

4 sin 2α sin 2β

(sin 2α + sin 2β)2
.
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Obviously, rt + tt = rl + tl = 1. For α + β = π/2, we have sin 2α = sin 2β and rl = 0.
The corresponding angle αB is called the Brewster angle; it is determined by the relation
tanαB = n2/n1. The ray that is reflected at an angle αB is polarized transversely with respect
to the plane of incidence.

If the direction of the incident wave is orthogonal to the interface, the two cases degenerate
into one, and we obtain

r =
(

n1 − n2

n1 + n2

)2

, t =
4n1n2

(n1 + n2)2
. (4.51)

If we have the situation of total reflection, the refracted wave is exponentially damped, cos β
becomes purely imaginary, and |E′/E| = 1. In this case rl = rt = 1. The totally reflected
wave is phase-shifted relative to the incoming wave, while the refracted wave, according to
eqs. (4.47) and (4.48), is always in phase with the incoming wave. For an “ordinary” reflected
wave, only the phase differences ∆ϕ = 0 and ∆ϕ = π occur.

4.7 The Fabry–Perot interferometer

The Fabry–Perot interferometer is one of the most precise instruments in optics and has nu-
merous applications. Its principle is based on the multiple reflection of plane waves. The
simple arrangement of this interferometer consists of two highly planar and parallel interfaces
which are partly transparent and partly reflective for incoming light (fig. 4.9). Let the optical
distance between the two planes be d.

Figure 4.9: Principle of a Fabry–Perot interfero-
meter.

We determine the transmissivity of the total apparatus for a plane wave that hits the first
interface almost from above with an amplitude E.

We denote the transmission amplitude for this wave at the first interface by τ1, and the
transmission amplitude for a wave that hits the second interface from above by τ2. Further-
more, ρ is the reflection amplitude of both interfaces for waves that hit the surfaces from
between the two planes. For small incident angles we may neglect the influence of polariza-
tion.

Before the wave leaves the apparatus from below, it could have been reflected at the inner
interfaces 2n times. The total amplitude leaving the apparatus is given by

E′ =
∞∑

n=0

En, (4.52)
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with En = τ1[ρ2 exp(2ikd/cos θ)]nτ2E, where 2ikd/cos θ is just the phase difference after
two transitions of the distance between the two plates. From

ρ2 = r exp[2iδ(k, θ)] (4.53)

and

ϕ = δ + ikd/cos θ, (4.54)

we obtain

E′ =
τ1τ2

1 − r exp(2iϕ)
E, (4.55)

and the total transmissivity of the apparatus is given by

T (k, θ) = |τ1τ2|2 1
|1 − r exp(2iϕ)|2 . (4.56)

If the reflection coefficient has a value close to r = 1, the transmissivity T (k, θ) exhibits a
sharp peak at ϕ(k, θ) = mπ (m integer).

The condition ϕ = mπ may be realized for fixed k either by changing the distance d, or by
varying the incident angle θ. For a so-called Fabry–Perot etalon, separation d is fixed. Usually
it consists of a highly plane-parallel glass plate with mirrored sides such that the reflection
coefficient r is close to r = 1.



5 Electro-, magneto- and elastooptical phenomena

An electric or magnetic polarization of some medium may be due not only to an applied
electromagnetic field but also to other external influences, like e.g. mechanical deformations.
Furthermore, a material may exhibit spontaneous polarization without any external influence.
In this chapter we will describe some of the more important polarization effects of this type,
but we will restrict ourselves to electric polarization. First, we will discuss effects of zeroth and
first order, i.e. electric polarization that is spontaneous or depends linearly on some external
influence. Later we will also consider effects of higher order.

5.1 Polarization effects up to first order – optical activity

We use the following ansatz for the electric displacement density of the medium:

Di(ω, x) = P
(0)
i + εij(ω)ε0Ej(ω, x) + λijk(ω)ujk(ω, x)

+ γijk(ω)ε0 ∂kEj(ω, x) + · · · . (5.1)

This ansatz includes the following:

• A spontaneous polarization P
(0)
i . Materials for which P

(0)
i �= 0 are called pyroelectric.

• A linear dependence on an electric field. Here εij is the dielectric permeability, which we
have already discussed in detail.

• A linear dependence on the distortion tensor ujk = 1
2 (∂juk +∂kuj). Materials for which

λijk = λikj �= 0 are called piezoelectric. Piezoelectricity is known from quartz crystals,
which become polarized under distortions. This phenomenon is used in technology to
generate very stable oscillating circuits.

• A linear dependence on the gradient of the electric field. The so-called natural optical
activity is an example of such an effect. When we derived the dielectric material equa-
tions, we made the assumption that the applied fields were homogeneous for a volume
containing many molecular cores. The condition was |k|d � 1, where d is the typi-
cal molecular distance. The contribution proportional to ∂kEj(ω, x) is a first correction
term to this homogeneity assumption and is particularly important for rapidly fluctuating
fields. On the other hand, for very large wavenumbers, |k|d ≥ 1, the phenomenologi-
cal theory of material properties, obtained by averaging over many molecules, becomes
meaningless. In this case we are dealing with the scattering of electromagnetic waves at
spatially distributed single molecules.
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The tensor quantities P
(0)
i , εij , λijk, and γijk are strongly constrained by the spatial symmetry

of the medium (which we take to be infinitely extended): the tensors must be invariant under all
transformations, which corresponds to a spatial symmetry of the medium. For translations, this
is a trivial condition. However, those combinations of rotations and reflections – i.e. elements
of the improper rotation group O(3) – which leave the medium invariant are more restrictive.
For instance, if a point reflection x → −x belongs to the symmetries of the medium, the
quantities P

(0)
i , λijk, and γijk vanish, because a tensor of odd order changes its sign under

this operation.

There are a total of 32 different subgroups of O(3), the so-called point groups, which
transform a spatial translational lattice into itself. This corresponds to the classification of
crystals according to the 32 crystal classes.

On the other hand, the seven crystal systems follow from the classification of crystals ac-
cording to Γ⊂O(3), the symmetry group of the translational lattice. Obviously, the symmetry
group Γ′ of a crystal is a subgroup of the symmetry group Γ of its translational lattice. If
Γ = Γ′, the crystal is called holohedral. In general, a crystal with symmetry group Γ′ belongs
to the crystal system for which the lattice has the smallest possible symmetry group Γ⊇Γ′.

For P
(0)
i �= 0, the symmetry group Γ′ ⊂O(3) can only contain rotations around no more

than one axis and it should not contain any reflections at planes orthogonal to this axis. Pyro-
electricity is only possible for 10 of the 32 crystal classes.

The constraints for piezoelectric crystals are less restrictive. Piezoelectricity is possible for
all pyroelectric crystals as well as for 10 more classes, making a total of 20 crystal classes.

Next we consider the polarization effect linear in ∂kEj and look for the constraints that
correspond to the symmetry principles of the kinetic coefficients and the passivity condition
for the quantities γijk(ω). In general, the symmetry condition may be written in the from

∫
d3x P (x) · δE(x) =

∫
d3x δP (x) · E(x). (5.2)

For our case it follows that∫
d3x δEi γijk(ω) ∂kEj =

∫
d3x Ei γijk(ω) ∂kδEj ,

and after partial integration we obtain

γijk(ω) = −γjik(ω). (5.3)

The passivity condition (2.94),

∫
dt

∫
d3x E · ∂P

∂t
≥ 0,
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implies for a harmonic time dependence:

Re
∫

d3x (−iω)E∗
i γikl(ω) ∂lEk = Im

∫
d3x E∗

i ωγikl(ω) ∂lEk

=
ω

2i

∫
d3x [E∗

i γikl(ω) ∂lEk − Eiγ
∗
ikl(ω) ∂lE

∗
k ]

=
ω

2i

∫
d3x [E∗

i γikl(ω) ∂lEk − E∗
i γ∗

ikl(ω) ∂lEk]

=
∫

d3x E∗
i Im{ωγikl(ω)} ∂lEk ≥ 0. (5.4)

Therefore, in the absence of absorption, we find γikl(ω) to be real. In this case the relation
between the fields E and D for plane waves, taking ordinary dielectric permeability into
account, may be written as

Di(ω) = [εik(ω) + iγikl(ω)kl]ε0Ek

= [εik(ω) + i(ω/c)γikl(ω)nl]ε0Ek, (5.5)

where εik(ω) is real. In addition to the dielectric permeability, we find a k-dependent imagi-
nary part. As γiklkl is antisymmetric with respect to the indices i and k, this term can also be
written in the form

γiklkl = εikrgr. (5.6)

Here gr is the so-called gyration tensor, which depends on the wave vector kl or the vector of
the refractive index nl = (c/ω)kl:

gr = grlnl. (5.7)

The matrix grl is also constrained by the symmetry of the medium. For an isotropic medium
or a cubic crystal we have

grl = const. × δrl. (5.8)

For a detailed description of the eigenwave solutions it is helpful to introduce the ten-
sor ζik, which is the inverse of the Hermitian tensor εik + iεikrgr. For most cases we have
|g|, |G| � |εik|, |ε−1

ik |, which, in first approximation, leads to

ζik = ε−1
ik + iεikrGr, (5.9)

where

εikrGr = −ε−1
ij εjsrgrε

−1
sk . (5.10)

Projecting the eigenvalue equation (4.23), n2ζ(ω)D − n[n · ζ(ω)D] = D, onto the plane
orthogonal to n, we get(

ζab − 1
n2

δαβ

)
Dβ = 0 (α, β = 1, 2)
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or (
ε−1
αβ + iεαβGr − 1

n2
δαβ

)
Dβ = 0. (5.11)

In the two-dimensional space orthogonal to n, we choose a basis such that ε−1
αβ becomes

diagonal. Denoting the diagonal elements by 1/n2
1 and 1/n2

2, we obtain the following eigen-
value equation:(

1/n2
1 − 1/n2 +iGn

−iGn 1/n2
2 − 1/n2

)(
D1

D2

)
= 0.

Here, Gn is the component of G that is parallel to n. The eigenvalues are

1
n2±

=
1
2

(
1
n2

1

+
1
n2

2

)
±

√
1
4

(
1
n2

1

− 1
n2

2

)2

+ G2
n, (5.12)

and the eigenvectors satisfy

D±
2 = iρ±D±

1 ,

where

ρ± =
1

2Gn

 1
n2

1

− 1
n2

2

∓
√(

1
n2

1

− 1
n2

2

)2

+ 4G2
n

 . (5.13)

From these results we deduce that D±
2 /D±

1 is purely imaginary, the eigenwaves are el-
liptically polarized, and the axes of the polarization ellipses are collinear to the principal ori-
entations of ε−1

αβ . Because of the relation ρ+ρ− = −1, the polarization ellipses of the two
eigenwaves are related to each other by a rotation of 90◦.

In general, the effect of the imaginary part, iεikGr, is small, i.e. ρ+ � 1, and the polar-
ization ellipses are extremely prolonged and almost resemble linear polarizations.

However, this is no longer true if the eigenvalues of ε−1
αβ coincide. If εik = εδik, this is the

case for all n. The term iεikGr leads to a qualitatively different behavior because it reduces
the symmetry. Writing 1/n2

1 = 1/n2
2 = 1/n2

0 = 1/ε we now obtain

1
n2±

=
1
n2

0

± Gn and ρ± = ∓1. (5.14)

The eigenvectors are circularly polarized and have different phase velocities. Furthermore,
due to eq. (5.10), we have in first approximation

Gi = − 1
n4

0

gi, (5.15)

and, because of the symmetry of the medium, gi = αni and Gn = α/n3
0 (compare eq. (5.8)).
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Plane-polarized waves can be written as a superposition of waves with a circular polariza-
tion. If a plane-polarized wave passes through such a medium, the different phase velocities
of the right- and left-circular components lead to a phase shift between the two planar compo-
nents and to a rotation of the plane of polarization.

Let us consider a wave propagating along the 3-axis and being plane-polarized along the
1-direction. Then we have

D1 = 1
2A(eik+z + eik−z) = A eikz cos(κz),

D2 = 1
2 iA(−eik+z + eik−z) = A eikz sin(κz),

(5.16)

where

k± =
ω

c
n± =

ω

c
(n0 ∓ 1

2Gnn3
0) =

ω

c
(n0 ∓ 1

2α),

k = 1
2 (k+ + k−) =

ω

c
n0, (5.17)

κ = 1
2 (k+ − k−) = −ω

c

α

2
. (5.18)

Hence, the angle ϕ between the plane of polarization and the 1-direction is given by

ϕ = κz = −ω

c

αz

2
. (5.19)

This rotation of the plane of polarization is called the natural optical activity of a medium. As
we discussed at the beginning of this section, this phenomenon can only occur if the medium
is mirror-asymmetric.

For instance, tartaric acid is a molecule existing in two different forms that are mirror
images of each other. Living organisms only produce one of these “enantiomorphic” forms.
A solution of natural tartaric acid is an isotropic medium that exhibits optical activity. The
rotation of the plane of polarization per unit length is proportional to the concentration of the
solution and can be used to measure this concentration. The sense of rotation of the plane of
polarization around the direction of propagation k/k is independent of k. Hence, if a plane-
polarized wave passes through a medium in both directions, e.g. because it is reflected at the
far side, there will be no net change of polarization.

5.2 Polarization effects of higher order

For many situations of theoretical and practical importance, terms of quadratic or even higher
powers in the external influences on the electric polarization are crucial. In general, these terms
may be incorporated by letting the coefficients εij , λijk, and γijk, introduced in section 5.1,
depend on these external influences in first or higher order. In the present context we restrict
ourselves to a discussion of the particularly important dependence of the electric permeability
εik on various quantities.

First of all we look at the dependences on distortions and shear flows. Finally, εij may also
depend on the electromagnetic fields E and B. For very intense radiation, such a dependence
on the field strengths can lead to measurable effects, which we will partly discuss later in the
context of nonlinear optics. Here we will only consider special nonlinear effects, where an
applied homogeneous electromagnetic field changes the optical properties of a medium.
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5.2.1 Dependence on distortions

The most general linear dependence of the quantity εij on the distortion urs is of the form

εij = ε
(0)
ij + ξijrsurs. (5.20)

The effects are particularly dramatic for a medium that is isotropic in its undistorted state.
In this case the distortion may lead to an asymmetry and double refraction. On placing the
distorted medium between two polarization filters with orthogonal polarization directions, the
distortions become directly visible upon illumination. This effect is used in material sciences
to study the strength and breaking of materials. For an isotropic medium we have

εij(ω) = ε(0)δij + λ1(ω)urrδij + λ2(ω)(uij − δijurr).

The term with coefficient λ1 leads to small changes of the isotropic refractive index, while
the term with coefficient λ2 gives rise to a qualitatively different anisotropic behavior of the
medium. Coefficients λ1 and λ2 are called elastooptical constants.

5.2.2 Dependence on shear flows

Anisotropy effects may also be produced by shear flows in a fluid. If v(ω, x) is the flow field
for an incompressible fluid, the most general linear ansatz is of the form

εik = ε(0)δik + µ1

(
∂vi

∂xk
+

∂vk

∂xi

)
+ µ2

(
∂vi

∂xk
− ∂vk

∂xi

)
. (5.21)

The last term on the right-hand side (with coefficient µ2) vanishes after a transformation to a
suitable local reference system. Within the framework of classical mechanics, it can be shown
that this implies µ2 = 0; however, quantum effects allow for µ2 �= 0. In any case, we find, in
general, that µ2 � µ1. The anisotropy effect related to µ1 �= 0 is called Maxwell’s effect.

5.2.3 Influence of electric fields

We start with a discussion of the influence of electric fields. A linear relation between εij(ω)
and E is of the following form:

εik(ω) = ε
(0)
ik (ω) + αikrEr. (5.22)

The effect related to this type of dependence is called the Pockels effect. The tensor αikr is
constrained by the same symmetry conditions as the piezoelectric tensor.

Effects quadratic in E are not subject to any symmetry constraints of the medium. They
are most easily observed in isotropic and mirror-symmetric media, which for symmetry rea-
sons do not exhibit a Pockels effect. In this case, a quadratic dependence is related to a qual-
itative change of the behavior of the medium. A second-order dependence on E is of the
following type:

εik = (ε(0) + βE2)δik + αEiEk. (5.23)
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The second term is crucial, because it leads to optical anisotropy, while the first term, βE2δik,
only induces an unimportant change of the isotropic dielectric permeability.

Due to the additional term αEiEk, the electric permeability εik is no longer invariant under
arbitrary rotations but only under rotations around an axis parallel to the field vector E. In the
presence of a homogeneous field, a formerly isotropic medium shows the optical properties of
a uniaxial crystal. This leads to the so-called Kerr effect: double refraction under the influence
of an electric field. The optic axis is parallel to the direction of E and the principal values of
the refractive index are given by ε1,2 = ε(0) and ε3 = ε(0) + αE2.

Both the Pockels effect and Kerr effect are utilized for rapid switching or modulation of
laser beams, for instance. The principle of a Pockels cell is simple (see fig. 5.1). A medium is
placed between two orthogonal polarization filters. The transparency of the system for a light
ray can be influenced by an external field applied to the medium.

Figure 5.1: Principle of a Pockels cell.

5.2.4 Dependence on magnetic fields

Very interesting phenomena occur if the dielectric permeability εik depends on a homogeneous
magnetic field. General symmetry requirements for the kinetic coefficients imply that

εik(ω, B) = εki(ω,−B), (5.24)

and therefore a term linear in B has to be antisymmetric in i and k. The passivity condition
(2.94) now reads

ω

2i
[εik(ω, B) − ε∗ki(ω, B)] is positive semidefinite.

Hence, for a transparent medium, εik(ω, B) must be Hermitian but not necessarily real. Split-
ting into real and imaginary parts,

εik(ω, B) = ε′ik(ω, B) + iε′′ik(ω, B), (5.25)

we see that the real part is symmetric in i and k, and even with respect to B, while the
imaginary part is antisymmetric and odd:

ε′ik(ω, B) = ε′ki(ω, B) = ε′ik(ω,−B),

ε′′ik(ω, B) = −ε′′ki(ω, B) = −ε′′ik(ω,−B).
(5.26)

Keeping only the linear approximation in B changes only the imaginary part:

εik = ε
(0)
ik + iεikrgr, (5.27)
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where

gr = grsBs. (5.28)

For the isotropic case we have

εik = ε(0)δik + αεikrBr. (5.29)

The discussion of optical properties follows closely that on natural optical activity. If we
apply a magnetic field B to a medium, which in the absence of an external magnetic field is
isotropic, then the plane of polarization of a plane-polarized light beam with a wave vector
k = (ω/c)n that is not orthogonal to B will be rotated by an angle

ϕ =
ω

2cn0
aBnz = RBnz with Bn =

n · B
n0

. (5.30)

This rotation of the plane of polarization, discovered by Michael Faraday in 1845, is called
the Faraday effect. The Faraday effect constituted the first hint pointing to a relation between
optics and electromagnetism. The constant R is called Verdet’s constant. Despite the math-
ematical analogy between this effect and the treatment of natural optical activity, we should
emphasize the following differences:

1. There are no symmetry constraints for the Faraday effect. In contrast to n, the vector B
does not change sign under point reflections. Therefore, the term αεikrBr is compatible
with reflections.

2. Changing the direction n of the beam also changes the sign of Bn and thereby also the
orientation of the plane of polarization. If a beam passes through the medium in both
directions (being reflected in between), the magnitude of the effect doubles.

On a microscopic level, the Faraday effect can be explained as follows. In the presence of
a magnetic field, the charges in a medium not only oscillate but also rotate with frequency
ωL = eB/m (the Larmor frequency). Therefore, depending on the orientation of the circularly
polarized light, the medium reacts differently.

For n · B = 0, the Faraday effect is absent. In analogy to the Kerr effect, one can now
observe an effect quadratic in B, which is called the Cotton–Mouton effect.
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6.1 Nonlinear polarization – combination frequencies

In the previous chapter we mentioned certain effects that occur in homogeneous media, which
we could attribute to the field dependence of the dielectric constant εij(E, B). However, up
to now we have confined ourselves to the influence of homogeneous, time-independent (or
slowly varying) fields on εij . In this case the equations for the wave fields remained linear and
could be solved easily.

Yet, if the field strength of the wave field itself reaches a scale where the dependence of the
dielectric tensor εij on these fields becomes noticeable, we enter the realm of nonlinear optics:
the wave equations become nonlinear, thus allowing for a vast number of new phenomena,
which we will discuss in this chapter.

The electric field strengths of light waves coming from ordinary sources reach values of
about 100 V/m, and they induce charge displacements inside materials that are of the order of
10−14 cm and thus small compared to typical atomic distances of about 10−8 cm. For these
values, the polarization depends linearly on the electric field strength.

However, for field strengths of about 106 V/m and charge displacements of the order of
10−10 cm, nonlinear effects may become important. Such values of the field strengths are
common for laser beams and may also be found in glass-fiber cables where large radiation
powers pass through very small cross-sections.

Nonlinear effects in the magnetic permeability µij as well as nonlinear dependences on
the magnetic field strength B turn out to be less important and will not be considered here.

We will restrict our discussion to the dependences of the dielectric tensor on the elec-
tric field strength E and on the displacement tensor uij . For nonlinear contributions that are
not too large, it is helpful to make a Taylor expansion in E and uij . We write the electric
polarization as the sum of a linear and a nonlinear term,

Pi = χijε0Ej + λijkujk + P ′
i , (6.1)

and take into account the following contributions for the nonlinear quantity P ′(E, u):

P ′
i = αijkEjEk + αijklEjEkEl + · · ·

+ ξijrsEjurs + ξijkrsEjEkurs + ξijklrsEjEkElurs + · · · . (6.2)

The case αijk �= 0 is not possible for isotropic media. Invariance under point reflections
requires all material tensors of odd order to vanish.

The presence of nonlinear terms has far-reaching consequences, the most important one
being the loss of the superposition principle for solutions of the wave equation. A further
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unpleasant side-effect for practical calculations is that for a harmonic time dependence we
have to work with the real fields E = E0 cos(ωt + ϕ) instead of the complex exponential
function.

If the incoming field Ei, uij exhibits a harmonic time dependence of frequency ω, the
nonlinear polarization P ′ also contains higher harmonics 2ω, 3ω, due to identities like

cos2(ωt) = 1
2 [1 + cos(2ωt)],

cos3(ωt) = 1
4 [3 cos(ωt) + cos(3ωt)],

(6.3)

and so on, as well as time-independent contributions. This leads to phenomena like frequency
multiplication and optical rectification: a signal of frequency ω generates signals with fre-
quencies that are multiples of ω as well as a time-independent signal.

More generally, let us consider the case in which the incoming fields consist of several
frequency components ω1, ω2, ω3, . . . . Due to identities like

cos(ω1t) cos(ω2t) = 1
2{cos[(ω1 + ω2)t] + cos[(ω1 − ω2)t]}, (6.4)

cos(ω1t) cos(ω2t) cos(ω3t) = 1
4{cos[(ω1 + ω2 + ω3)t] + cos[(ω1 + ω2 − ω3)t]
+ cos[(ω1 − ω2 + ω3)t] + cos[(ω1 − ω2 − ω3)t]},

(6.5)

and so on, the polarization P ′ also contains the combination frequencies of {ωi}:

Ω{ε} =
∑

i

εiωi, (6.6)

where εi = ±1.
Because of the nonlinear polarization P ′, an incoming wave with frequency ω gener-

ates higher harmonics with frequencies 2ω, 3ω, as well as a rectified signal. Due to the fre-
quency dependence of the refractive index, these signals will propagate with different veloci-
ties. Therefore, a spatially concentrated signal tends to “diverge” inside a nonlinear medium.

In eq. (6.2) a term of nth order in Ei and of mth order in uij corresponds to a nonlinear
coupling of n + 1 electromagnetic waves and m sound waves.

After quantizing the wave motions, a wave with frequency ω and wave vector k will be
associated to quanta with energy E = �ω and momentum p = �k. The quanta of the electro-
magnetic wave field are called photons, and those of the sound wave field are phonons. Hence,
the nonlinearities describe interactions of n + 1 photons with m phonons.

If we associate positive frequencies with outgoing quanta and negative frequencies with
incoming quanta, the combination law (6.6) translates into the conservation of energy for all
quanta taking part in the interaction.

The typical frequencies of light and sound waves are in the range of 1015 Hz and 103–
105 Hz, respectively, and thus differ by many orders of magnitude. The difference in wave-
lengths of 10−5 cm and 10–0.1 cm, respectively, is also large, but, due to the different propa-
gation velocities, not quite as impressive.

Because of these differences in scale, the effects related to the term ξijrsEjurs in eq. (6.2),
which is linear in Ej and urs, are in general not treated as part of nonlinear optics, since urs
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may be considered to be quasi-constant compared to Ei. Nevertheless, we will discuss these
effects in this chapter.

We should also mention that the nonlinear polarization P ′ and the electromagnetic waves
induced by the nonlinearities give rise to further combination waves, and we may expect all
higher combination frequencies

Ω{n} =
∑

niωi (ni integer) (6.7)

of the original frequency ω to contribute. Only for the case of small nonlinearities may one
hope that the higher combination frequencies are suppressed compared to the lower ones.
These relations will we studied in the next section.

6.2 Nonlinear waves in a medium

In the absence of external charges and currents, Maxwell’s equations inside a medium assume
the form

∇ · D = 0, ∇ · B = 0,

∇ × H = κ
∂D

∂t
, ∇ × E = −κ

∂B

∂t
.

(6.8)

We neglect magnetic effects and set B = µ0H . Applying ∇× to the fourth equation and
using the third one yields

∇(∇ · E) − ∆E = −κ2µ0
∂2D

∂t2
. (6.9)

Like in eq. (6.1), we separate linear and nonlinear contributions in D(E) but neglect distortion
effects and write

Di = εijε0Ej + P ′
i (E). (6.10)

With κ2µ0ε0 = 1/c2 we obtain

1
c2

εij
∂2Ej

∂t2
−∇i(∇ · E) − ∆Ei = −κ2µ0

∂2P ′
i (E)

∂t2
. (6.11)

On the left-hand side of eq. (6.11) we find a wave operator for a linear medium; the nonlin-
earity is represented by the term on the right-hand side, which deprives the wave equation of
its linearity. The nonlinear wave equation (6.11) is much too complicated to be solvable in
general.

Next we will assume a series of specializations and approximations by which we hope to
arrive at a closed solvable system of equations, which still describes the important aspects of
the general problem. The first assumption is as follows:

• The wave propagates only along the 3-axis; there is rotational invariance around the
3-axis, and the fields E and P ′ are transverse to the 3-axis.
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This assumption will be satisfied if, in a linear approximation, the medium is optically uni-
axial and the optic axis is the 3-axis (compare section 4.3). With this assumption, eq. (6.11)
simplifies to

ε

c2

∂2Ei

∂t2
− ∂2Ei

∂z2
= −κ2µ0

∂2P ′
i

∂t2
(i = 1, 2). (6.12)

Furthermore, we make the following assumption:

• The nonlinearity is only quadratic, i.e.

P ′
i = αijkEjEk (i, j, k = 1, 2). (6.13)

The following assumption is more drastic:

• The nonlinearity is small enough that, to a good approximation, the fields Ei and P ′
i

contain only three frequencies: the fundamental frequencies ω1 and ω2 as well as their
sum ω3 = ω1 + ω2.

This corresponds to the ansatz:

Ei =
3∑

ν=1

Eων
i , P ′

i =
3∑

ν=1

P ′ων
i , (6.14)

with

Eων
i (t, z) = Re{Eν

i (z) ei(kνz−ωνt)},
P ′ων

i (t, z) = Re{P ν
i (z) ei(kνz−ωνt)},

(6.15)

for ν = 1, 2, 3, where kν =
[√

ε(ων)/c
]
ων =

(√
εν/c

)
ων . Because of eq. (6.13), the fre-

quency parts P ′ων are given by

P ′ω3
i = Re{αijkE1

j E2
k ei(k1z+k2z−ω3t)},

P ′ω1
i = Re{αijkE3

j E2 ∗
k ei(k3z−k2z−ω1t)}, (6.16)

P ′ω2
i = Re{αijkE3

j E1 ∗
k ei(k3z−k1z−ω2t)}.

For ν = 3 the equations following from these assumptions for the frequency components in
eq. (6.12) read(

−k2
3 − ∂2

∂z2

)
Re{E3

i (z) ei(k3z−ω3t)}

= κ2µ0ω
2
3 Re{αijkE1

i (z)E2
i (z) ei(k1z+k2z−ω3t)}. (6.17)

Similarly for ν = 1, 2. This is a system of ordinary differential equations for Eν
i (z). In addi-

tion, we assume that the following holds:
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• The variations of the amplitudes Eν
i (z) are small for distances of about a wavelength

such that∣∣∣∣ ∂2

∂z2
Eν

i (z)
∣∣∣∣ � ∣∣∣∣kν

∂

∂z
Eν

i (z)
∣∣∣∣ ,

and the following approximation is valid:

∂2

∂z2
Eν

i (z) ei(kνz−ωνt) =
(
−k2

ν + 2ikν
∂

∂z
Eν

i

)
ei(kνz−ωνt). (6.18)

This leads to

Re
{

ik3
∂E3

i

∂z
ei(k3z−ω3t)

}
= −1

2κ2µ0ω
2
3 Re{αijkE1

j E2
k ei(k1z+k2z−ω3t)}, (6.19)

and similarly for ν = 1, 2.

Our final assumption is as follows:

• The phases of the quantities in brackets on both sides of eq. (6.19) differ approximately
by δϕ = π. This is known as the rotating phase approximation and corresponds to the
assumption of a fixed phase relation between Eων

i and the nonlinear polarization P ′ων

i .

This last condition permits us to change to complex quantities, since eq. (6.20) also holds for
the imaginary part:

dE3
i

dz
=

i
2

κ2µ0ω
2
3

k3
αijkE1

j E2
k eiz∆k,

dE1
i

dz
=

i
2

κ2µ0ω
2
1

k1
αijkE3

j E2 ∗
k e−iz∆k, (6.20)

dE2
i

dz
=

i
2

κ2µ0ω
2
2

k2
αijkE3

j E1 ∗
k e−iz∆k.

The quantity ∆k = k1 + k2 − k3 is called the phase mismatch.
The system of eqs. (6.20), describing the so-called three-wave interaction, is of fundamen-

tal importance for a model-based discussion of the influence of nonlinearities that are not too
dominant. A phase mismatch ∆k �= 0 tends to “smear out” the oscillations on the right-hand
side of eqs. (6.20) and to suppress larger values of the amplitudes Eν

i . We will come back to
this point in the next section. Complete phase matching, ∆k = k1 + k2 − k3 = 0, can be
interpreted in a particle picture as momentum conservation of the photons participating in the
interaction.

If the above-mentioned simplifications are not justified, e.g. if the nonlinearities are too
dominant, one has to go back to the full system of nonlinear oscillation equations. Under cer-
tain circumstances all complexities of nonlinear dynamics may show up: extremely sensible
dependence on the initial conditions, chaotic behavior, strange attractors, sudden qualitative
changes of the behavior as a result of minor changes in external parameters, and much more.
However, the subject of nonlinear dynamics is not the topic of this book, and for details the
reader is referred to the literature given at the end.
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Surprisingly, there is a class of nonlinear partial differential equations whose solutions
exhibit no chaotic behavior and can be constructed explicitly. In most cases these are spe-
cial differential equations in one space and one time coordinate. The simplest example is the
nonlinear Schrödinger equation for a complex function ψ(τ, ζ):

i
∂ψ

∂τ
+

∂2ψ

∂ζ2
+ 2|ψ|2ψ = 0. (6.21)

We will study this equation in more detail in section 6.8. The nonlinear Schrödinger equa-
tion can be used to explain such phenomena as self-focussing and automatic phase matching
(see sections 6.3 and 6.6). One can easily verify that eq. (6.21) has a certain class of special
solutions:

ψ0(τ, ζ) =
2b exp{−2i[2(a2 − b2)τ − aζ]}

cosh[2b(ζ − 4aτ)]
. (6.22)

These solutions correspond to so-called solitary waves: |ψ0(τ, ζ)| describes a spatially con-
centrated signal of width 1/2b propagating with a velocity v = 4a without changing its shape.
The width of the signal decreases with its height.

The possibility of non-decaying, spatially constant excitations is remarkable in itself. The
effects of dispersion and nonlinearity, each supporting the tendency of a signal to diverge, just
compensate in this case.

Even more remarkable is the fact that eq. (6.22) admits N -soliton solutions for arbitrary
values of N . In the limit t → −∞, these solutions describe N spatially separated signals of
the form (6.22) with, in general, different widths and velocities. Letting time evolve, the faster
signals will overtake the slower ones. When two signals approach each other, they become
distorted for a moment but regain their original shape after separation. In the limit t → ∞, the
solution corresponds to separated signals again.

This property of shape conservation already suggests that an infinite number of conser-
vation laws underlie eq. (6.21). A detailed analysis confirms this suggestion. The nonlinear
Schrödinger equation even has the property of complete integrability: like in the case of inte-
grable systems with finitely many degrees of freedom, the conservations laws can be used to
determine all solutions of the equation.

Another example of a completely integrable nonlinear wave equation is the sine–Gordon
equation:(

∂2

∂t2
− ∂2

∂x2

)
ϕ + sin ϕ = 0. (6.23)

The fundamental non-trivial solutions of this equation are the so-called kink and anti-kink
solutions:

ϕ±(t, x) = −4 arctan exp
(
±x − x0 − vt√

1 − v2

)
. (6.24)

Their asymptotic behavior is given by

limx→±∞ ϕ±(t, x) = −2π,

limx→∓∞ ϕ±(t, x) = 0.
(6.25)
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These solutions resemble upward or downward steps, smeared out with a width
√

1 − v2. The
transition from one asymptotic value to the other happens mainly in a region around x =
x0 + vt. There are solutions with N kinks and N anti-kinks; furthermore, there exist breather
solutions: bound states of kinks and anti-kinks oscillating around their common center. The
simplest breather solution is given by

ϕB = 4 arctan
(

tanα
sin(t sinα)

cosh(x sinα)

)
. (6.26)

An application of the sine–Gordon equation is the theoretical treatment of self-induced trans-
parency (see sections 6.3 and 6.6).

As a final example for a completely integrable equation, we mention the general three-
wave interaction:

∂A3

∂t
+ v3

∂A3

∂x
= iA1A2,

∂A1

∂t
+ v1

∂A1

∂x
= iA3A

∗
2, (6.27)

∂A2

∂t
+ v2

∂A1

∂x
= iA3A

∗
1.

Equation (6.20), describing a general three-wave interaction, can be brought into the above
form if each of the waves Ei has fixed polarizations.

The interested reader will find details about the huge field of completely integrable systems
in the references at the end of the book.

6.3 Survey of phenomena in nonlinear optics

We begin our discussion of special nonlinear optical effects with a survey of those phenomena
which are to be expected if the nonlinearities are not too strong.

In table 6.1, the effects are ordered according to the powers of Ei and uij as they occur
in the nonlinear polarization P ′

i . The second column summarizes the “static” effects already

discussed in section 5.2. In this case only the (quasi-)static external fields E
(0)
i and u

(0)
ij give

rise to nonlinear contributions, while the wave field Ei still enters in a linear way. The third
column contains the most important “dynamic” effects, which are nonlinear in the wave fields.

The phenomena related to the terms quadratic in E are also called three-photon phenom-
ena, because this case describes the coupling of three electromagnetic fields; the phenomena
related to terms cubic in E are so-called four-photon phenomena. The effects linear in E in
the third row are usually not considered as part of nonlinear optics.

The phenomenon of frequency doubling occurs when light with some frequency ω enters a
nonlinear medium. The nonlinearity of the medium causes the emergence of higher harmonics
with frequency 2ω. This phenomenon is used to generate coherent light in frequency ranges
that are not directly accessible for lasers, because of the lack of suitable materials.

Parametric amplification can occur when a pumping wave of frequency ω3 and a signal
wave of frequency ω1 pass through the medium simultaneously. Under suitable circumstances
the signal wave gets amplified within the nonlinear medium. Furthermore, a so-called idler
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Table 6.1: Effects of nonlinear polarization.

Static Dynamic

P ′ ∼ E2 Pockels effect Frequency doubling, optical rectification;
two-photon absorption;
parametric amplification

P ′ ∼ E3 Kerr effect Frequency tripling, three-photon absorption;
intensity dependence of the refractive index,
self-focussing; phase matching;
self-induced transparency, optical bistability

P ′ ∼ Eu Elastooptical effects,
electrostriction

Brillouin scattering

P ′ ∼ E3u Stimulated Brillouin scattering

wave of frequency ω2 = ω3 − ω1 is generated. What distinguishes parametric amplification
compared to other amplification mechanisms is its extremely low noise. One can also imagine
optical control elements, which, in analogy to transistors, are based on light instead of electric
currents. At present a completely new area of applications seems to be emerging and photonics
is about to become the optical analogue of electronics. In the following section we will discuss
the phenomena of frequency doubling and parametric amplification in more detail.

Two-photon absorption is of special importance in spectroscopy. Two beams of light with
frequency ω enter the medium from opposite directions and induce electromagnetic transitions
with excitation energy ∆E = 2�ω. The advantage of two-photon spectroscopy is that the
otherwise annoying Doppler broadening related to inner movements inside the absorber are
suppressed. A further possibility is multiple absorption.

Effects trilinear in E show up in an intensity dependence of the real and imaginary parts
of the refractive index. We shall describe the corresponding phenomena later. The imaginary
part of the refractive index, i.e. the absorption coefficient, can depend on the intensity due to
a saturation effect: the levels that get excited by absorption processes are already occupied. In
this case one observes a decrease of the absorption coefficient.

Brillouin scattering is an inelastic scattering effect where electromagnetic radiation and
sonar vibrations are coupled. Classically, this corresponds to a distortion dependence of the
refractive index. In a particle picture, a photon of frequency ω and a phonon of frequency ωS

merge to a photon of frequency ω + ωS:

�ω + �ωS −→ �(ω + ωS).

Spectroscopically, one observes an anti-Stokes line with increased frequency. On the other
hand, the creation of a phonon may lead to a Stokes line with lower frequency:

�ω −→ �ωS + �(ω − ωS).

If the light couples to molecular vibrations instead of lattice vibrations, one speaks of Raman
scattering. Stimulated Brillouin scattering (and stimulated Raman scattering) consist of an
interaction of several photons with oscillation quanta.
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The reader may wonder why we have omitted, in table 6.1, a row with P ′ ∼ E2u. This
would correspond to processes of the following type:

�ω1 + �ω2 −→ �(ω1 + ω2 − ωS) + �ωS,

2�ω −→ �(2ω − ωS) + �ωS.

Because of the huge scale differences between ωS on the one side and ω1 and ω2 on the other
side, these processes correspond to a parametric amplification with an additional coupling to
lattice vibrations, or to an almost frequency doubling with the participation of an oscillation
quantum. Such processes do not have any obvious applications.

6.4 Parametric amplification and frequency doubling

A quantitative discussion of the process of parametric amplification starts from the fundamen-
tal equations (6.20) for a three-wave interaction. No relevant information is lost if we assume
a fixed polarization direction for each of the three waves.

A simple rescaling of the remaining components of E1, E2, and E3 leads to the equations:

dA3

dz
= iA1A2 eiz∆k,

dA1

dz
= iA∗

2A3 e−iz∆k, (6.28)

dA2

dz
= iA∗

1A3 e−iz∆k.

To relate these equations with the situation of parametric amplification, we identify A3 with
the intensive pump wave, A1 with the signal wave to be amplified, and A2 with the additional
idler wave (see section 6.3).

We may assume |A3| � |A1|, |A2|. In this case ∂A3/∂z is small of second order, i.e.
A3 is almost constant. Without loss of generality, we further assume A3 to be real. For the
resulting simplified system of equations,

dA1

dz
= iA3A

∗
2 e−iz∆k,

dA∗
2

dz
= −iA3A1 eiz∆k,

(6.29)

we make the substitutions

u = A1 eiz∆k/2 and v = A∗
2 e−iz∆k/2, (6.30)

and obtain a system with constant coefficients that is easily solved:

du

dz
= 1

2 i∆k u + iA3v,

dv

dz
= −iA3u − 1

2 i∆k v.

(6.31)
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For the solution with initial conditions A2(0) = 0 and A1(0) �= 0 we find:

A1(z) = A1(0)
(

cosh(λz) − i∆k

2λ
sinh(λz)

)
eiz∆k/2,

A2(z) = iA1(0)
A3

λ
sinh(λz) eiz∆k/2,

(6.32)

where

λ =
√

A2
3 − 1

4 (∆k)2.

The exponential increase of A1(z) expresses the amplification. For non-vanishing phase mis-
match ∆k = k1 + k2 − k3, we find additional oscillations.

We now come to the phenomenon of frequency doubling. In this case we have ω1 = ω2 =
ω and ω3 = 2ω, and in addition A1 = A2, such that eq. (6.28) simplifies to

dA3

dz
= iA2

1 eiz∆k,

dA1

dz
= iA∗

1A3 e−iz∆k.

(6.33)

We are looking for a solution with initial condition A3(0) = 0, because the higher mode
wave is supposed to be produced inside the medium. From eq. (6.33) we immediately see
that, initially, A1 changes only very slowly while the amplitude A3 gradually increases.

Let us first limit our discussion to this initial region where we can assume A1 to be con-
stant. There we find

dA3

dz
= iA2

1(0) eiz∆k, (6.34)

i.e.

A3(z) = A2
1(0)

(
eiz∆k − 1

∆k

)
. (6.35)

Hence, we obtain for the intensity I3 ∼ |A3(z)|2 of the higher harmonics:

I3(z) ∼ |A1(0)|4 sin2(z∆k/2)
(∆k)2

. (6.36)

For ∆k �= 0 we find an oscillating dependence on z, while the height of the maxima increases
as (∆k)−2.

The oscillations caused by the phase mismatch ∆k �= 0 suppress a strong increase of
the amplitude A3, so that the initial region just considered usually extends over the entire
nonlinear medium. The oscillations of I3(z) can be observed directly, when we direct a high-
intensity light beam of frequency ω onto a plate of variable thickness z and measure the signal
leaving with frequency 2ω.
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In the following we will consider the case ∆k = 0. So, we solve

dA3

dz
= iA2

1,
dA1

dz
= iA∗

1A3, (6.37)

with the initial condition A3(0) = 0. We may assume A1(0) to be real, because if A1(z) and
A2(z) are solutions of (6.37), so are eiαA1(z) and e2iαA3(z) for arbitrary values of α. Now
dA3(0)/dz is purely imaginary. We set B1(z) = A1(z) and B3(z) = −iA3(z), i.e.

dB3

dz
= B2

1 ,
dB1

dz
= −B∗

1B3. (6.38)

Solutions with initial conditions B3(0) = 0 and B1(0) > 0 are real for all values of z, because
they are also the unique solutions of the real system dB3/dz = B2

1 , dB1/dz = B1B3.
Equation (6.38) can be solved by using the conservation law following from eq. (6.38):

d
dz

(B1B
∗
1 + B3B

∗
3) = 0. (6.39)

Obviously, the conserved quantity is proportional to the total intensity. From

B2
1(z) + B2

3(z) = I = B2
1(0),

we obtain

dB3

dz
= I − B2

3 , (6.40)

and because B3(0) = 0 we find that

B3(z) = B1(0) tanh[zB1(0)],

B1(z) =
√

B2
1(0) − B2

3(z) = B1(0)
1

cosh[zB1(0)]
.

(6.41)

We observe that B3(z) increases monotonically and, in the limit z → ∞, approaches B1(0),
while B(z) decreases monotonically and approaches zero.

For a sufficiently thick medium, the total intensity is transformed into the second harmonic
with double frequency. This transformation proceeds faster if the intensity I = B2

1(0) is larger.

6.5 Phase matching

After we have convinced ourselves of the importance of phase matching ∆k = 0 in nonlinear
optics in order to get good results for a combination signal, we now want to describe how
to realize phase matching. We will discuss this problem in the concrete context of frequency
doubling. For this example of a three-wave interaction we have ω1 = ω2 = ω, k1 = k2 = k,
and the matching conditions for the frequencies and wave vectors read

ω3 = 2ω and k3 = 2k.
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Hence, the wave vectors are parallel. As we did in chapter 3, we introduce the vectors for the
refractive index, i.e. n1 = n(ω1) = k1c/ω1 and n3 = n(ω3) = k3c/ω3, and obtain the
phase matching condition:

n1 = n3 or n(ω) = n(2 ω). (6.42)

The dispersion of the refractive index implies in general that |n(ω)| �= n(2ω), and
eq. (6.42) is not easily realized. The equality of the vectors for the refractive index means
that the wave surfaces defined in chapter 3 for the frequencies ω and 2ω must intersect at the
point n(ω) = n(2ω). For optically uniaxial crystals, the wave surfaces consist of the ordinary
contribution – a sphere – and the extraordinary contribution – an ellipsoid of revolution that
just touches the sphere from inside or outside. Figure 6.1 shows that indeed intersection points
of the ordinary and extraordinary contributions of the wave surfaces can occur for different
frequencies.

Figure 6.1: A cut through the wave surfaces for the frequencies ω
and 2ω for an optically uniaxial crystal. Here n denotes the vector
for the refractive index; and Fo(ω), Fo(2ω) are the ordinary and
Fe(ω), Fe(2ω) the extraordinary shells of the wave surfaces for
the frequencies ω and 2ω, respectively.

The ordinary surface for the frequency ω intersects the extraordinary surface for the fre-
quency 2ω at point n. Hence, for this choice of n, we find phase matching. In general, how-
ever, the corresponding ray vectors so(ω) and se(2ω) do not coincide. As fig. 6.2 illustrates,
an incoming regular beam with frequency ω has the effect that light with frequency 2ω will
be emitted all over the plane spanned by so(ω) and se(2ω).

Figure 6.2: The ray vectors n = so(ω) ‖ n and se(2ω)
for the ordinary and the extraordinary rays.

This flaw does not occur if the ordinary wave surface for the frequency ω and the extra-
ordinary wave surface for the frequency 2ω meet by chance at just one point n, because in
this case n, so(ω), and se(2ω) are parallel (see fig. 6.3). Fortunately, this degenerate case can
be realized for some materials, e.g. in a KDP (potassium dihydrogen phosphate) crystal at a
wavelength of λ = 0.5145 µm. Fine tuning makes use of the temperature dependence of the
refractive index. According to section 4.3, the linear polarizations of the ordinary wave with
frequency ω and the phase-matched extraordinary wave with frequency 2ω are orthogonal.
(As linear polarized waves have vanishing angular momentum in the propagation direction,
balance of angular momentum is also guaranteed.)
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Figure 6.3: A cut through the wave surfaces with frequencies ω
and 2ω for the degenerate case. The notations are as in fig. 6.1.
The vectors so(ω) and se(2ω) are equal.

The phase matching condition n(ω) = n(2ω) implies that the propagation velocities for
the wave with frequency ω and the first harmonic with frequency 2ω must coincide. This re-
quirement can be easily visualized. A wave with frequency ω generates permanently, by non-
linear polarization along its trajectory through the medium, a higher harmonic with frequency
2ω. If the fundamental wave and the higher harmonic have different propagation velocities,
the higher harmonic generated at different points gets out of phase and they cancel each other
due to interference.

6.6 Self-focussing, optical bistability, phase self-modulation

We now turn to a discussion of those phenomena which are trilinear in Ei,

P ′
i = αijklEiEkEl, (6.43)

i.e. the four-photon processes. In contrast to three-photon processes, the existence of such
couplings does not depend on any symmetry properties of the medium. The relevant effects
are already contained in the most symmetric case,

P ′
i = αEi|E|2, (6.44)

which, for an isotropic medium, implies an intensity dependence of the refractive index n of
the form

n =
√

ε(0) + α|E2| =
√

ε(0) + α/
[
2
√

ε(0)
]|E|2 + · · · ,

i.e.

n = n0 + n1I + · · · , (6.45)

where n1 can be real or complex; the real refractive index as well as the absorption coefficient
can depend on the intensity.

Unlike in the previous sections, we will now restrict ourselves to a qualitative discussion of
the phenomena and will not enter into detailed model studies (like, for example, the nonlinear
Schrödinger equation or the sine–Gordon equation) but refer to the literature listed at the end
of the book.

We first consider a real refractive index and assume n1 > 0, i.e. the refractive index
increases with increasing intensity. This case is more important and more frequent.
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Figure 6.4: Intensity profile of a light ray perpendicular to
the direction of propagation.

We now suppose that an intense bundle of parallel rays is directed onto such a medium.
The intensity will be perpendicular to the direction of propagation and will decrease from
inside to outside, as indicated in fig. 6.4.

Since the refractive index decreases with distance from the center of the beam and since,
according to Snell’s law of refraction, the direction of the beam is refracted into the direction
∇n, i.e. toward an increasing refractive index, the incoming bundle of rays will contract in
the direction perpendicular to the ray (fig. 6.5). For obvious reasons, this effect is called self-
focussing.

Figure 6.5: Self-focussing of a light beam in a non-
linear medium.

A large incoming intensity can lead to a vast contraction factor and an extremely high
energy flux density. The field strength may reach values that are sufficient for ionization pro-
cesses and for the destruction of the nonlinear material.

Instead of a longitudinally extended ray bundle, we now consider a light pulse that is
concentrated in the longitudinal direction. At the front and rear ends of the pulse, the intensity
and the refractive index are smaller and thus the propagation velocity is larger. As the front and
rear parts of the pulse propagate faster than the middle part, there is a tendency for the pulse
to change its shape, as indicated in fig. 6.6. While the pulse is passing through the medium,
its front side will become flatter while its rear side will become steeper. This nonlinear effect
is called phase self-modulation.

Figure 6.6: Changing pulse shape by phase self-modulation.



6.6 Self-focussing, optical bistability, phase self-modulation 97

Let us now investigate how the spatial Fourier transform of the pulse changes inside a
medium. The non-constant refractive index leads to a change of wavelengths such that the
bandwidth ∆kz of the signal broadens as a function of kz . We can even say more: due to the
different slopes of the sides, the smaller wavenumbers kz will contribute more to the front side
and the larger wavenumbers to the rear side.

(Superimposed on the nonlinear effect is the normal linear dispersion effect, which leads to
a diverging pulse, because the propagation velocity depends on the wavelength; however, this
effect does not change the bandwidth ∆kz and, therefore, does not interfere with the nonlinear
effect.)

After the pulse has passed through the nonlinear medium and acquired the shape just
described, one can, in a second step, use a suitable device to give the pulse a narrow spatial
concentration along the z axis by allowing the shorter wavelengths from behind to catch up
with the longer wavelengths in front. This is possible, for example, by letting the distorted
pulse traverse a medium with anomalous dispersion where the propagation velocity decreases
as a function of the wavelength.

Practically, the second step is achieved by reflection at two refraction gratings. As one
can see in fig. 6.7, the gratings reflect the longer wavelengths through a larger angle, thereby
retarding them due to the longer distance.

Figure 6.7: Reflection at two refraction gratings
delays waves with larger wavelengths.

The total factor for the longitudinal contraction reached by such methods can be of the
order of 100. For wavelengths of about λ ≈ 6 × 10−4 mm, one can obtain in this way pulse
durations of the order of femtoseconds (10−15 s).

In section 6.3 we have already mentioned that for very high light intensities the absorp-
tion coefficient can dramatically decrease as the result of saturation effects. We now describe
briefly how this effect can be used for the construction of an optically bistable device.

A medium showing saturation behavior for absorption is placed between the two étalons
of a Fabry–Perot interferometer and the setup is illuminated by light with intensity I0. We
have already discussed the theory of the Fabry–Perot étalons in section 4.7, but now we have
to take into account the absorption of the medium in order to determine the transmission of
the device. From the derivation in section 4.7 it is obvious that this can easily be achieved
by replacing the reflection coefficient r in eq. (4.56) by rt2, where t denotes the intensity
decrease for one passage as well as a possible phase shift. From eq. (4.55) we now obtain for
the emitted intensity I1:

I1 = |τ1τ2|2 1
|1 − rt2 e+2iϕ|2 I0 =: T (t)I0. (6.46)
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For the present discussion, t depends on the intensity I ′ inside the étalons immediately in front
of the medium, and we learn from the calculation in section 4.7 that I1 = |τ2t|2I ′. Therefore,
we obtain the following relation between I1 and I0:

I0 = I1
1

T (t(I1))
. (6.47)

For small values of I1, T is almost independent of I1. The same is true for very large values of
I1, when t has reached its saturation value |t| ≈ 1. In these two regimes, the relation between
I0 and I1 is almost linear.

In between, t(I1) and T (t(I1)) increase as a function of I1. In general, the relation between
I1 and I0 is no longer monotonic but follows the pattern sketched in fig. 6.8. If we start from
small values and gradually increase the intensity of I0, the transmitted intensity I1 initially
also increases continuously. However, at a value I0 = A0 it will suddenly jump from A1 to
B1, and from there on increase again continuously as a function of I1. If now I0 is decreased,
also I1 will decrease continuously first, but then make a jump at I0 = B0 < A0 from B′

1

to A′
1.

Figure 6.8: Optical bistability.

Hence, we find bistability and a hysteresis effect in the relation between I0 and I1. The
arrangement just described corresponds to an optical switch element for which the variation
of I0 induces jumps between two stable branches of I1(I0).

6.7 Phase conjugation

A plane mirror reflects a plane wave in such a way that only the direction of propagation is
reversed, while surfaces of constant phase remain planes. An incoming plane wave u(t, x) =
e−i(ωt−k·x) becomes a reflected wave u(t, x) = R e−i(ωt+k·x), where R has a fixed amplitude
and phase. In a similar way, a spherical mirror reflects a matching spherical wave into itself:
u(t, x) = (1/r) e−i(ωt−k·r) is transformed into u(t, x) = (R/r) e−i(ωt+k·r) (see fig. 6.9).

In general, given a wave uω(t, x) = e−iωtA(x) eiϕ(x) = e−iωtuω(x) with fixed frequency
ω, arbitrary amplitude A(x), and phase ϕ(x), we define the so-called phase conjugated wave
to be:

uc
ω(t, x) = e−iωtA(x) e−iϕ(x) := e−iωtuc

ω(x) = e−iωtu∗
ω(x). (6.48)
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Figure 6.9: Inversion of wave
fronts at a plane mirror and a
spherical mirror.

The surfaces of constant phase of u(t, x) and uc(t, x) have the same shape, but the directions
of propagation of u(t, x) and uc(t, x) are reversed. For the Fourier transform we use the
identities

uω(x) = (2π)−3/2

∫
d3k eik·xũω(k),

uc
ω(x) = u∗

ω(x) = (2π)−3/2

∫
d3k e−ik·xũ∗

ω(k)

= (2π)−3/2

∫
d3k eik·xũ∗

ω(−k),

and obtain

ũc
ω(k) = ũ∗

ω(−k). (6.49)

One might ask if it is possible to construct a mirror that transforms any wave uω(t, x) into
Ruc

ω(t, x), i.e. each incoming wave is reflected into itself (fig. 6.10). In order to reflect a wave
without changing its shape, such a phase conjugating mirror has to adapt itself automatically
to the shape of any incoming wave surfaces. In this section, we will show how such a mirror
can be realized with the help of nonlinear media. An eye looking into such a phase conjugating
mirror would only see its own pupil.

Figure 6.10: Reflection at a phase conjugating
mirror.

Of course, the main reason for the broad interest in this construction is not based on this
effect, but because it helps to undo the distortions that a light wave experiences during its
passage through an irregular medium (fig. 6.11).

For instance, refraction at spatial density fluctuations will stretch a highly concentrated
light bundle in the atmosphere. This expansion becomes broader if the light bundle runs back
after being reflected at an ordinary mirror, but it is compensated if it has been reflected at a
phase conjugating mirror.
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Figure 6.11: Compensation of
the distortions of wave fronts af-
ter reflection at a phase conju-
gating mirror.

We consider a wave uω(t, x) entering a nonlinear medium. The relevant mechanism for the
production of a phase conjugated wave Ruc

ω(t, x) consists of stimulated Brillouin scattering,
i.e. the interaction of a light wave with (ultra-)sound waves previously excited by the wave
itself. The following explanations anticipate some knowledge about refraction and holography,
which we will study in a later chapter and which may be skipped in a first reading.

The wave uω(t, x) is refracted at ultrasonic waves which are always present in the
medium. Refraction occurs, because ultrasonic waves consist of density fluctuations and re-
fractive index is density-dependent. Since the refraction takes place at a moving grating, the
refracted wave shows a small frequency shift |∆ω| ≤ ωcs/c, where cs is the velocity of sound
and c is the velocity of light. The sign of the frequency shift depends on the propagation di-
rection of the ultrasonic wave: ∆ω is positive when the ultrasonic wave approaches the wave
uω(t, x). For a refraction exactly in the backwards direction, a special effect occurs. First,
in this case the frequency shift is maximal (while it vanishes in the forward direction); and,
second, the interference of the refracted wave and the incoming wave produces “beats”, i.e.
modulated amplitude patterns that travel through the medium with velocity ±cs.

By electrooptical interaction the pattern of the electromagnetic beats generates a corre-
spondingly shaped ultrasonic wave, which again amplifies the backward refraction and thereby
itself. This self-amplification eventually leads to a spatial phase lattice consisting of ultrasonic
waves, which mimics the shape of the wave surfaces uω(t, x) and results in a conjugated wave
by backward refraction.

A different and frequently used method is based on the working principle of holography.
It utilizes the so-called degenerate four-wave interaction, a special case of stimulated Bril-
louin scattering, which is also mediated by sound waves. A planar reference wave u0(t, x)
and a phase conjugated plane wave uc

0(t, x) are directed simultaneously and from opposite
directions into the medium (see fig. 6.12). The wave pattern generated by the superposition of
the reference wave u0(t, x) and the additional object wave u(t, x) produces a phase lattice of
analogous shape, which resembles a kind of volume hologram.

Figure 6.12: Phase conjugation by de-
generate four-wave interaction.
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The wave uc
0 serves as the reconstruction wave and produces holographically the conju-

gated wave uc. The production mechanism is stabilized and amplified by the fact that the
superposition of uc

0 and uc generate the same phase lattice.
If we compare the above considerations with our discussion on holography in chapter 11,

we notice that:

• the transition from an amplitude to a phase lattice does not fundamentally change the
mechanism of holography, and,

• if the reconstruction wave is phase conjugated, the principal wave generated holographi-
cally is also phase conjugated to the object wave.

6.8 Fiber optics and optical solitons

Compared to radio waves, light waves have a frequency and bandwidth that are several orders
of magnitude larger. Therefore, light waves are particularly suited for the construction of infor-
mation transmission channels of very high capacity. Given a typical bandwidth of 5×1013 Hz,
information transmission rates of 1012 bit/s become possible.

Optical information transmission uses glass fibers. Today’s systems reach transmission
rates of about 108 bit/s; systems with transmission rates of 1012 bit/s use optical solitons and
are presently being developed.

The basic structure of a glass fiber is always the same (fig. 6.13): a core with a diameter of
3–50 µm is placed inside a cladding of 150–200 µm diameter. By suitable doping, e.g. with
GeO2, one can arrange that the refractive index of the core glass is smaller than that of the
cladding. Depending on whether the change of the refractive index between core and cladding
occurs stepwise or gradually, one speaks of step profile (or step index) fibers or gradient profile
fibers, respectively.

Figure 6.13: Beam trajectories for step profile and gradient profile fibers.

A light beam traveling through the core and having only a small inclination with respect to
the fiber axis will remain in the core region of the fiber. In step profile fibers it will be totally
reflected at the interface between core and cladding, while in gradient profile fibers it will be
bent back toward the center of the core due to the decreasing refractive index.

The signal in the fiber is digitized, i.e. it consists of a series of short pulses. However, a
disturbing influence may come from the so-called mode dispersion: beams that are inclined
relative to the axis of the cable traverse a longer trajectory compared to beams parallel to the
axis. Differences in the transition times can lead to a broadening of an initially short pulse.
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In gradient profile fibers, by a suitable choice of the refractive index profile n(r), one can
arrange that this time delay along the longer trajectory is compensated due to the decrease in
n(r) and the corresponding increase in velocity for larger values of r. This method is generally
used in today’s glass-fiber cables, and yields a reduction of mode dispersion by a factor of 100;
the temporal broadening of the pulses amounts to about 0.5 ns/km.

Two minima in the absorption coefficients of glass confine the practically used wavelength
regimes to two windows at 1.3 µm and 1.55 µm.

If the diameter of the core is reduced to only a few micrometers, the just described prop-
agation and mode dispersion in terms of ray optics is no longer valid. In this case, a wave
theoretical treatment is necessary and one has to solve the following equation:(

∆ + n2(r, ω)
ω2

c2

)
u = 0. (6.50)

In cylindrical coordinates the ansatz

u(r, ϕ, z) = χm(r) eimϕ eikz (6.51)

leads to the equation(
d2

dr2
+

1
r

d
dr

− m2

r2
+ n2(r, ω)

ω2

c2
− k2

)
χm(r) =: [Λ(ω2)− k2]χm(r) = 0. (6.52)

We look for eigenmodes χνm(r) of the differential operator Λ(ω2) that are regular at r = 0
and decay sufficiently fast for r → ∞. They correspond to the discrete eigenvalues κ2

νm(ω2):

Λ(ω2)χνm(r) = κ2
νm(ω2)χνm(r) (ν = 1, 2, . . . ; m = 0,±1, . . .). (6.53)

Figure 6.14: Dispersion relations for two different
modes.

The dispersion relation, which gives us ω as a function of k, follows from the equation
κ2

νm(ω2) = k2. Figure 6.14 shows the graphical solution of ω as a function of k. We see the
following:

• In general, we find a different dispersion relation for each eigenvalue κ2
νm(ω2). This

corresponds to the phenomenon of mode dispersion in the language of wave optics.

• For very small values of k2 < κ2
00(0), no wave can propagate. For large values of k2,

several or even many modes are possible.
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• Mode dispersion can be avoided completely in so-called single-mode fibers. The dimen-
sions of these fibers are such that only the fundamental mode with eigenvalue κ2

00(ω
2)

is possible. Single-mode fibers have very small core diameters, because the distance be-
tween eigenvalues increases as the core diameter becomes smaller and, eventually, only
one mode is allowed in the wavenumber range for k.

Common single-mode fibers use a step profile for n(r). Let us investigate the propagation
behavior in single-mode fibers in more detail. The disturbing mode dispersion is completely
absent, but, because of the dependence k2 = κ00(ω2), there still exists a small dispersion
effect, which is called chromatic dispersion, because it is the frequency dependence of the
refractive index that contributes. We write the dispersion relation in the form:

k = f(ω). (6.54)

The derivative of f is given by f ′(ω) = dk/dω = (dω/dk)−1, i.e.

f ′(ω) =
1

vg(ω)
, (6.55)

where vg(ω) denotes the group velocity, which also depends on the frequency, a phenomenon
called group velocity dispersion. Depending on whether dvg(ω)/dω is positive or negative,
we speak of normal or anomalous group velocity dispersion. Obviously,

f ′′(ω) = − 1
v2
g

dvg

dω
. (6.56)

As we have already mentioned in section 6.2, nonlinearities can compensate the chromatic
dispersion if the nonlinear wave equation admits soliton solutions. We now show that the wave
propagation in single-mode fibers with nonlinear behavior can be described by the nonlinear
Schrödinger equation.

For k and ω fixed, a monochromatic wave may be written as

u = χ00(r) e−i(ωt−f(ω)z).

In general, a propagating wave is of the form u = χ00(r)E(t, z). For E(t, z) we can assume
a one-dimensional nonlinear wave equation of the type (6.12), where now we replace the third
and fifth assumptions of section 6.2 by this one:

• E(t, z) can be written as

E(t, z) = exp{−i[ω0t − f(ω0)z]}e(t, z) (6.57)

with slowly varying e(t, z).

In particular, this implies that only small frequencies and wavenumbers contribute to the
Fourier transform of e(t, z). Using the Fourier transform Ẽ(ω, k), the nonlinear wave equation
reads:

Re
{

1
2π

∫
dω

∫
dk e−i(ωt−kz)[k2 − f2(ω)]Ẽ(ω, k)

}
= − ∂2

∂t2
P ′(E). (6.58)
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The above assumption allows for the approximation

k2 − f2(ω) ≈ 2k0[k − f(ω)] ≈ 2k0[∆k − f ′(ω0)∆ω − 1
2f ′′(ω0)(∆ω)2], (6.59)

with k0 = f(ω0), such that eq. (6.58) now becomes

Re
{

1
2π

e−i(ω0−k0z)2k0

∫
dω

∫
dk e−i(∆ωt−∆kz)

× [∆k − f ′(ω0) ∆ω − 1
2f ′′(ω0)(∆ω)2]Ẽ(ω, k)

}
= Re

{
2k0 e−i(ω0−k0z)

(
−i

∂

∂z
− if ′(ω0)

∂

∂t
+ 1

2f ′′(ω0)
∂2

∂t2

)
e(t, z)

}
= − ∂2

∂t2
P ′(E).

Along similar lines as in section 6.2, we finally obtain the equation:

−i
(

∂

∂z
+

1
vg

∂

∂t

)
e(t, z) + 1

2f ′′(ω0)
∂2

∂t2
e(t, z) = α|e(t, z)|2e(t, z). (6.60)

The following simple substitutions,

ζ =
1

vgτ0
(z − vgt), τ = −f ′′(ω0)z

2τ2
0

,

ψ(τ, ζ) =

√
ατ2

0

|f ′′(ω0)| e(τ, ζ),

(6.61)

lead to the nonlinear Schrödinger equation:

i
∂ψ

∂τ
+

∂2ψ

∂ζ2
− 2εψ|ψ|2 = 0. (6.62)

Here, ε = −1 for anomalous group velocity dispersion (i.e. f ′′ < 0) and ε = +1 for normal
group velocity dispersion.

The case f ′′ < 0 is realized for a single-mode fiber. Written in terms of the new variables
(6.61), the soliton solution (6.22) of the nonlinear Schrödinger equation reads:

ψ(t, z) = 2b
exp

[
− 2ia

vgτ0
(z − vgt) + 4i(a2 − b2)

f ′′

2τ2
0

z

]
cosh

[
2b

(
z − vgt
vgτ0

− 2af ′′z
τ2
0

)] . (6.63)

In practice, one tries to implement frequency matching: the phase of ψ is time-independent
because E(t, z) oscillates with frequency ω0. So we set a = 0 in eq. (6.63) and obtain for the
form of the soliton:

ψ(t, z) = 2b
exp

[−2ib2f ′′z
τ2
0

]
cosh

[
2b(z − vgt)

vgτ0

] . (6.64)
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This is a spatially concentrated pulse-like excitation that propagates through the glass fiber
without any change of shape and with group velocity vg. The height of the pulse is larger for
smaller width.

Such solitons can be used in single-mode fibers as dispersion-free signal pulses. They
allow for transmission rates of about 1012 bit/s.

The case ε = 1 in the nonlinear Schrödinger equation is also of physical importance. It can
be used for a detailed discussion of momentum contraction, which we described in section 6.5.
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7.1 Introductory remarks

Common to all optical systems is that light passes through an inhomogeneous medium where
the inhomogeneities, like lenses and mirrors, are suitably shaped according to their purpose.
Having so far studied the propagation of waves in homogeneous but possibly anisotropic me-
dia, we now will turn to the discussion of inhomogeneous media. Most of the time we will
assume that the inhomogeneous media are pointwise isotropic. On the other hand, anisotropic
media often exhibit a crystalline structure or at least a certain short-range ordering of their
atoms and thus are piecewise homogeneous.

Common everyday optical phenomena are often determined by the fact that the wavelength
of the light is small compared to the dimensions of the optical systems and, in many cases,
even small compared to the typical length scale of its inhomogeneities. Indeed, the wave-like
features of light are often hidden to such an extent that, for centuries, Newton’s corpuscular
theory, which treated light as a flux of small particles, lasted in mainstream scientific thinking.
Only in sophisticated experiments is the wave-like character of light revealed by interference
and diffraction phenomena. Quite a different matter is that, due to the wave–particle duality,
light also exhibits particle-like properties, which dominate its behavior at very short wave-
lengths and low intensities.

Since the wavelengths of light are tiny with respect to the size of normal optical systems,
the relevant solutions u(t, x) of the wave equation are locally given by plane waves. This
approximation holds for spatial regions that are large compared to the wavelength but small
compared to the typical dimensions of the system. Therefore, the amplitudes and the propaga-
tion direction of a wave will not change considerably within a distance of several wavelengths.
As a generalization of the expression for a plane wave with fixed frequency ω and a wave vec-
tor of absolute value k = ω/c,

uk(t, x) = ϕ0 e−i(ωt−k·x) = ϕ0 e−ik(ct−n·x),

we write u(t, x) in the following way:

uk(t, x) = ϕk(x) eik[S(x)−ct]. (7.1)

The (real) function S(x) determines the phase of the wave at x, and the function ϕk(x) (also
real) fixes the amplitude of the wave. We assume that the variations of ϕk(x) as a function
of x are much smaller than the variations of the phase kS(x). To be more precise, we require
that S(x) is independent of k, and for large values of k the following expansion for ϕk(x) is

Theoretical Optics. Hartmann Römer
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40429-5



108 7 Short-wave asymptotics

valid:

ϕk(x) = ϕ0(x) +
1
k

ϕ1(x) +
1
k2

ϕ2(x) + · · · . (7.2)

This ansatz for uk(t, x), which we will insert into the wave equation, is fundamental for the
short-wave approximation in optics. The second fundamental tool in this context is the method
of stationary phases, which we will discuss in chapter 10.

Before we apply the short-wave expansion to Maxwell’s equations, we want to list some
important comments on the ansatz for uk(t, x).

1. The function S(x) is sometimes called the eikonal function, because of its relevance for
the theory of imaging in geometrical optics. The surfaces S(x) = const. are surfaces of
constant phase. Their shape depends crucially on the chosen solution. Expanding around
x = x0 with S(x) = S(x0) + (x − x0) · ∇S(x0) + · · · and comparing with the
expression for a plane wave, we observe that

k(x0) = kn(x0) = k∇S(x0) (7.3)

is the local wave vector in x0, which is perpendicular to the surface of constant phase
through x0. Furthermore, n(x0) = ∇S(x0) is the local refractive index vector and
S(x0) = n/n2 is the local ray vector with S · n = 1.

For a plane wave we have S(x) = n · x with n ≡ const., and the surfaces of constant
phase are planes. On the other hand, when uk(t, x) describes the propagation of a point-
like disturbance starting at x = 0, the surfaces S(x) = const. are, for not too large values
of |x|, spheres or ellipsoids, which may be more or less distorted and can be viewed as a
generalization of the ray surface.

2. Taking superpositions of solutions of the type uk(t, x), where the frequency is concen-
trated in a small band around k, one can convince oneself that the surfaces S(x) = const.
are also surfaces of shell-like concentrations of shock-wave solutions. The energy of such
solutions is mainly concentrated within a small region around S(x) = const.

3. Surfaces of constant phase, S(x) = const., also determine the directions of the en-
ergy flux. In locally isotropic media the energy flux is parallel to the local wave vector
k(x) = kn(x) and, hence, always perpendicular to the surfaces of constant phase. In
this way light rays result as the orthogonal trajectories to the phase surfaces. In optical
experiments, these light rays are directly observable as stretched out wave packets. In-
deed, the energy of a wave packet always follows the direction of the energy flux vector.
The uncertainties of a wave packet in space and wavelength (∆x and ∆k, respectively)
satisfy the general uncertainty relations:

∆k ∆x ≥ 1
2

or
∆k

k

∆x

x
≥ 1

2kx
. (7.4)

Within the validity range of the short-wave approximation, one can construct wave pack-
ets for which the uncertainty orthogonal to the energy flux vector may be neglected. The
trajectories of these packets coincide with the light rays.

The theory of the light-wave field that results from keeping only the leading order in 1/k is
called geometrical optics.
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7.2 Short-wave expansion of Maxwell’s equations

In a locally isotropic medium, Maxwell’s equations for fields with a fixed frequency ω and
vanishing charge and current densities, ρ ≡ 0 and j ≡ 0, read

ε0∇ · (εE) = 0, µ0∇ · (µH) = 0,

∇ × H = −iωκεε0E, ∇ × E = iωκµµ0H ,
(7.5)

with D = ε0εE, B = µ0µH , ε = ε(ω, x), and µ = µ(ω, x). We insert the ansatz described
in section 7.1 into these equations,

E(t, x) = e(x) eik[S(x)−ct],

H(t, x) = h(x) eik[S(x)−ct],

with k = ω/c. Taking into account that

∇ × E = (∇ × e + ik∇S × e) eik[S(x)−ct],

∇ · E = (∇ · e + ik∇S · e) eik[S(x)−ct],
(7.6)

we obtain

e · ∇S = − 1
ik

(
e · ∇ε

ε
+ ∇ · e

)
,

h · ∇S = − 1
ik

(
h · ∇µ

µ
+ ∇ · h

)
,

(∇S × e − µµ0κch) = − 1
ik

∇ × e,

(∇S × h + εε0κce) = − 1
ik

∇ × h.

(7.7)

The right-hand sides of these equations should be negligible in leading order for k → ∞.
“Dangerous” are only those situations for which the expressions following −1/ik become
unusually large. For normal optical systems this can happen

• in the immediate vicinity of edges, where the amplitudes e and h as well as ε and µ
depend strongly on the space variable x, and

• close to focal points or, more generally, caustics where the light rays get concentrated
such that the amplitudes e and h become very large.

Apart from these two situations, which we will investigate later, we can trust the approxi-
mation of geometrical optics and assume for k → ∞:

e · ∇S = 0, h · ∇S = 0,

∇S × e = µµ0κch, ∇S × h = −εε0κce.
(7.8)
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These equations resemble the result we obtained by making a plane-wave ansatz for the solu-
tion of Maxwell’s equations, where now ∇S plays the role of n. Eliminating e or h leads to

∇S × (∇S × e) = −εµe

or

(∇S)2 = n2 with n2(ω, x) = εµ. (7.9)

This partial differential equation for the eikonal function S(x) is called the eikonal equation.
Different solutions for this equation correspond to different wave fields. The physical meaning
of the eikonal equation is that the local propagation velocity is given by c(x) = c/n(x).

In leading order of k → ∞, the following expressions for the time-averaged energy density
and Poynting vector S are easily determined:

〈ρel〉 =
εε0
4

e · e∗ =
1

4κc
(e × h∗) · ∇S,

〈ρmag〉 =
µµ0

4
h · h∗ =

1
4κc

(e × h∗) · ∇S = 〈ρel〉,
〈ρE〉 = 〈ρel〉 + 〈ρmag〉, (7.10)

〈S〉 =
1
2κ

Re(e × h∗) =
1

2κ2cµµ0
(e · e∗)∇S

=
c

n2
〈ρE〉∇S =

c

n
〈ρE〉∇S

n
=

I

n
∇S.

We make the following observations:

• The average electric and magnetic energy densities are equal.

• Energy flows along the direction of the vector ∇S, i.e. perpendicular to the surfaces of
constant phase and along the direction of the local wave vector.

• From the eikonal equation we see that σ = (1/n)∇S is a unit vector, and, therefore,
I := |〈S〉| = (c/n)〈ρE〉. Hence, the velocity of the energy flow is indeed equal to the
local phase velocity c/n.

Notice that, in leading order of k, there is only the eikonal equation for the phase kS,
and there are no restrictions for the amplitudes e and h. By choosing e and h properly, we
can generate solutions which, in leading order, correspond to sharply bounded rays that are
everywhere parallel to ∇S. The requirement of energy conservation,

∇〈S〉 = ∇
(

I

n
∇S

)
= 0,

yields

I

n
∆S + ∇S · ∇

(
I

n

)
= 0, or ∆S + ∇S · ∇ ln

(
I

n

)
= 0. (7.11)
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As we have seen, the light rays are the flux lines x(τ ) of the vector field ∇S. They satisfy
the differential equation:

dx

dτ
= ∇S. (7.12)

Along the light rays x(τ ), we obtain for eq. (7.11):

∆S(x(τ )) +
d
dτ

ln
(

I

n

)
= 0. (7.13)

Notice that along the rays the intensity change is determined by the divergence of the flow
field ∇S. Integrating both sides we get

I

n
(x(τ )) =

I

n
(x(0)) exp

(
−

∫ τ

0

dτ ′ ∆S(x(τ ′))
)

. (7.14)

For the simplest case, n ≡ 1, we find that S(x) = |x| is a rotationally symmetric solution of
the eikonal equation. Now,

∇S =
x

|x| , x(τ ) = τ
x(0)
|x(0)| , |x(τ )| = τ

and

∆S(x(τ )) =
2

|x(τ )| =
2
τ

.

Therefore,

I(x) = I(x0)
1

|x|2 . (7.15)

This describes the well-known quadratic decrease of the intensity as a function of distance.
If we had followed the same arguments for an anisotropic medium, the short-wave ex-

pansion would have been much more complicated. For each point, we would have obtained
two different local eigensolutions with different propagation velocities, as we have seen in
chapter 3. For this reason, the calculation would have involved two different eikonal functions
corresponding to the two orientations of the principal polarizations.

7.3 The scalar wave equation

We now turn to the short-wave expansion for the scalar wave equation:(
n2(x)

c2

∂2

∂t2
− ∆

)
u(t, x) = 0, (7.16)

which follows as the equation of motion from the Lagrangian density

L =
1
2

[
n2(x)

c2

(
∂u(t, x)

∂t

)2

− (∇u(t, x))2
]

. (7.17)
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As explained in chapter 3, this leads us to the following energy density and energy current
density:

ρE =
1
2

[
n2

c2

(
∂u(t, x)

∂t

)2

+ (∇u(t, x))2
]

,

S = −∂u(t, x)
∂t

∇u(t, x).

(7.18)

The ansatz u(t, x) = u(x) exp(−iωt) yields Helmholtz’s equation:(
1
k2

∆ + n2(x)
)

u(x) = 0 with k =
ω

c
. (7.19)

Writing u(x) = ϕk(x) eikS(x), with ϕk(x) = ϕ0(x) + (1/k)ϕ1(x) + · · · , we obtain

0 =
(

1
k2

∆ + n2(x)
)

u(x) (7.20)

=
(

1
k2

∆ϕk +
2i
k

∇ϕk ∇S +
iϕk

k
∆S − ϕk(∇S)2 + n2ϕk

)
eikS.

Thus we find in zeroth order for 1/k → 0:

(∇S)2 = n2, (7.21)

and in first order:

ϕ0∆S + 2∇S ∇ϕ0 = 0,

∆S + ∇S ∇lnϕ2
0 = 0, (7.22)

∇(ϕ2
0∇S) = 0.

So we get the same eikonal equation as we did for Maxwell’s equations. The equation of first
order is called the transport equation.

Looking at the expressions for ρE and S, we find in leading order of 1/k → 0:

〈ρE〉 = 1
2n2k2ϕ2

0, 〈S〉 = 1
2ck2ϕ2

0∇S =
c

n
〈ρE〉∇S

n
. (7.23)

Hence, the transport equation describes the energy conservation and is identical to the energy
balance condition for Maxwell’s equations. So, as long as we do not have to take into account
information about the polarization of light waves, which in any case depends strongly on
the details of the system, the scalar wave equations provide, in first order of 1/k, the same
information about phases and intensities as Maxwell’s equations. Therefore, the following
discussion will be based on the scalar wave equation.

Along a light ray, where dx/dτ = ∇S, we find in particular:

ϕ0(x(τ )) = ϕ0(x(0)) exp
(
−1

2

∫ τ

0

dτ ′ ∆S(x(τ ′))
)

. (7.24)
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Let us consider a system of rays,

x(x0, τ) with
dx(x0, τ)

dτ
= ∇S(x(x0, τ)), (7.25)

with initial condition

x(x0, 0) = x0. (7.26)

The mapping x0 �→ gτ (x0) = x(x0, τ) defines a one-parameter family of (locally) invertible
mappings from R

3 into itself. The JacobianJ (x0, τ) = det(∂xi(x0, τ)/∂xj
0) is a measure for

the distortions of volumes under these mappings. As is well known, J satisfies the following
differential equation:

1
J

dJ
dτ

= ∇ · ∇S = ∆S. (7.27)

Therefore,

J (x0, τ) = exp
(∫ τ

0

dτ ′ ∆S(x(τ ′))
)

,

and instead of eq. (7.23) we can also write

ϕ0(x(τ )) =
ϕ0(x(0))√J (x(τ ))

. (7.28)

We note that now the conservation of energy reveals itself as a τ independence of the following
integral:∫

d3x0 ϕ0(gτ (x0))2.

7.4 Phase surfaces and rays

From a solution of the eikonal equation (∇S)2−n2 = 0, a system of rays is obtained that are
trajectories orthogonal to the level surfaces determined by the condition S(x) = const. (see
fig. 7.1). On the other hand, we will see later that we can reconstruct a solution of the eikonal
equation from a system of rays with suitable initial conditions on a single level surface. As
|(1/n)∇S| = 1, the equation

nσ = ∇S (7.29)

determines a field σ of unit vectors. Hence, if we choose the arc length s as a curve parameter
for the light rays, they satisfy the following differential equation:

dx

ds
= σ(x(s)). (7.30)
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Figure 7.1: For a solution of the eikonal equation one obtains a
system of rays that are orthogonal trajectories to the level surfaces
of constant phase.

A simple calculation shows that

d
ds

n
dx

ds
=

d
ds

(nσ) =
d
ds

∇S = (σ · ∇)∇S =
1
n

(∇S · ∇)∇S

=
1
2n

∇(∇S)2 =
1
2n

∇(n)2 = ∇n. (7.31)

Therefore, light rays are always curved towards the direction of increasing values of n. From

∇ × (nσ) = ∇ × ∇S = 0, (7.32)

we find that the integral∫ x

γx0

nσ · dx

is independent of the path γ that connects x0 with x. This implies that the phase S(x) assumes
a well-defined value at each point. From ∇ × (nσ) = 0 we can also derive Snell’s law of
refraction. We assume that n jumps from n1 to n2 at some interface, but is constant otherwise.
By choosing a closed path γ (see fig. 7.2) which traverses the interface at two points and runs
parallel to the interface in the regions where n ≡ n1 and n ≡ n2, we obtain∫

γ

dxn · σ = 0,

and thus

n1σ
′′
1 = n2σ

′′
2 ,

where σ′′
1,2 are the components of σ1 and σ2 parallel to the interface. Indeed, since σ′′

1,2 =
sin θ1,2, where θ1,2 are the angles between the rays and the normal to the interface, we find

n1 sin θ1 = n2 sin θ2. (7.33)

One may object to this derivation of the law of refraction, because the sudden change of
n seems to contradict the applicability of the approximation underlying geometrical optics.
Indeed, we know that refraction always comes together with reflection. Geometrical optics
cannot predict the relative intensities of refracted and reflected waves.
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Figure 7.2: Geometrical illustration of Snell’s law of
refraction.

7.5 Fermat’s principle

Evaluating the path-independent integral,∫ x

γx0

∇S · dx =
∫ x

γx0

nσ · dx =
∫ x

x0

nσ
dx

ds
ds = S(x) − S(x0), (7.34)

along some arbitrary path γ and making use of the inequality

σ · dx

ds
≤ |σ|

∣∣∣∣dx

ds

∣∣∣∣ = 1,

we obtain∫ x

γx0

nσ · dx ≤
∫ x

γx0

n ds. (7.35)

Equality holds only if the path γ corresponds to a light ray, which, of course, always points
into the direction of σ such that in this case σ · (dx/ds) = 1. This leads us to Fermat’s
principle:

Among all trajectories γ running from x0 to x, the trajectories that are realized by
light rays yield the smallest possible value, S(x)−S(x0), for the integral

∫ x

γx0
n ds.

From Fermat’s principle we easily derive the law of refraction as well as the law of reflection.
Fermat’s principle has the following geometrical interpretation. Apart from the natural-

length element

ds2 = ẋiẋi dτ2, (7.36)

we define on R
3 a new light-length element:

dl2 = n2(x)ẋiẋidτ2 = n2 ds2. (7.37)

With respect to the natural-length element, the arc length of a curve x(t) is given by

s21 =
∫

ds =
∫ t2

t1

√
ẋ2 dτ. (7.38)

However, expressed in terms of the light-length element, we find

l21 =
∫

dl =
∫ t2

t1

n(x(τ ))
√

ẋ2 dτ. (7.39)
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Geodesics are the shortest connections between two points. With respect to the natural-
length element these are just straight lines. However, with respect to the light-length element,
the geodesics are light rays. Due to the relation n(x) = c/c(x), the length

l = c

∫
γ

ds

c(x)
= cT (7.40)

is proportional to the time that a light ray needs to travel along the path γ. Since the frequency
ω is fixed, T is proportional to the number of oscillations as well as to the sum of the local
wavelengths along γ. Therefore, Fermat’s principle is sometimes stated in the following way:

A light ray runs from x1 to x2 along the path that is traversed in the least time.

Fermat’s principle is a further example of the relevance of variational principles in physics.
The analogy between geometrical optics and mechanics is based on the fact that both theories
can be formulated in terms of variational principles.

7.6 Analogy between mechanics and geometrical optics

There exists a close analogy between the eikonal equation in optics and the Hamilton–Jacobi
equation in mechanics, as well as between light rays and the trajectories in a mechanical
system. Just as a reminder for the reader, we briefly describe the Hamilton–Jacobi theory for
a mechanical system with the following Lagrange function:

L(x, ẋ) = 1
2mik(x)ẋiẋk − V (x). (7.41)

The canonical momenta are

pi =
∂L

∂ẋi
= mikẋk, (7.42)

and the Hamiltonian,

H(x, p) = piẋi(x, p) − L(x, ẋ(x, p)),

is given by

H(x, p) = 1
2m−1

ik pipk + V. (7.43)

Here, m−1
ik denotes the elements of the inverse matrix of (mij). Hamilton’s equations of mo-

tion, namely

∂H

∂pi
= ẋi,

∂H

∂xi
= −ṗi, (7.44)

are equivalent to Lagrange’s equation of motion,

d
dt

∂L

∂ẋ
− ∂L

∂x
= 0.
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The Hamilton–Jacobi equation is the following partial differential equation:

H(x, ∇S) = 1
2m−1

ik ∂iS ∂kS + V = E. (7.45)

If S is a solution of the Hamilton–Jacobi equation, we obtain the trajectories x(t) of the
system as the orthogonal trajectories of the level surfaces of S in the following way. The
momentum pi(t) = mij ẋj(t) is given by

pi(t) = ∂iS(x(t)). (7.46)

So in general it is not ẋi but pi that is orthogonal to the level surfaces of S. (If mij = mδij ,
as in most cases, ẋ and p are parallel.) As a proof of this statement we first verify

ẋi =
∂H

∂pi
= m−1

ij pj , i.e. indeed pi = mij ẋj , (7.47)

and then calculate
dpi

dt
=

d
dt

(mijẋj) =
d
dt

∂iS = ẋk ∂k∂iS = m−1
kr ∂rS ∂k∂iS

= 1
2∂i(m−1

kr ∂kS ∂rS) − 1
2 (∂im

−1
kr ) ∂kS ∂rS

= −∂iV − 1
2 (∂im

−1
kr ) ∂kS ∂rS

= −(∂iH)(x, p). (7.48)

So, the trajectories orthogonal to the level surfaces of S are, in the way described above,
solution curves of the mechanical system. In chapter 9, we will see in a more general context
that also the reverse statement is true: all solution curves are orthogonal trajectories to the
level surfaces of S. The function S is closely related to the action

∫
dt L(x, ẋ), if one chooses

for x(t) a solution of the equation of motion. Indeed,∫ t

t0

dt′ L(x, ẋ) =
∫ t

t0

dt′ [p · ẋ − H(x, p)]

=
∫

p · dx − E(t − t0) = S(x) − S(x0) − E(t − t′). (7.49)

The fundamental idea of using the Hamilton–Jacobi method in order to find solutions of
the equation of motion consists in determining sufficiently many solutions of the Hamilton–
Jacobi equation and then calculating all orbital curves as orthogonal trajectories. We now write
the eikonal equation (∇S)2 = n2 in one of the following equivalent forms:

(A)
1
2
(∇S)2 − 1

2
n2 = 0,

(B)
1
2n

(∇S)2 − 1
2
n = 0, (7.50)

(C)
1

2n2
(∇S)2 − 1

2
= 0.

In all three cases we can identify the equation as the Hamilton–Jacobi equation of an ap-
propriate mechanical system, and the three equations differ merely by their choice of time
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coordinates. In addition, we find for all three cases E = 0 such that S is the action func-
tional. (A different version of the analogy between optics and mechanics uses the so-called
extended phase space where t and (−E) are introduced as additional position and momentum
coordinates.) Table 7.1 itemizes the analogy in more detail.

Table 7.1: Analogy of light rays and orbital curves of mechanical systems.

(A) (B) (C)

m = 1, V = − 1
2
n2 m = n, V = − 1

2
n m = n2, V = − 1

2

L = 1
2
ẋ2 + 1

2
n2 L = 1

2
nẋ2 + 1

2
n L = 1

2
n2ẋ2 + 1

2

H =
p2

2
− n2

2
H =

p2

2n
− n

2
H =

p2

2n2
− 1

2

dx

dτ
= ẋ = p = ∇S

dx

ds
=

1

n
p = ẋ

dx

dl
= ẋ =

p

n2

|ẋ| = n |ẋ| =

˛̨̨
˛ 1

n
∇S

˛̨̨
˛ = 1 |ẋ| =

1

n

E = 1
2
ẋ2 − 1

2
n2 = 0 E = 1

2
nẋ2 − 1

2
n = 0 E = 1

2
n2ẋ2 − 1

2
= 0

d2x

dτ
=

1

2
∇n2 d

ds

„
n

dx

ds

«
= ∇n

d

dl

„
n2 dx

dl

«
=

1

2
ẋ2∇n2

In all three cases, the value of |ẋ| follows either from p = ∇S and the eikonal equation,
or from E = 0, and the law of refraction follows from the conservation of the momentum
component parallel to the interface between the media.

The action S and the momentum p are the same in all cases. Therefore, we obtain the
same light rays with different parametrizations, and the relations between the parameters τ , s,
and l are:

dτ

ds
=

1
n

,
dl

ds
= n. (7.51)

In addition, we should make the following comments on the systems (A), (B), and (C):

(A) This system has the closest similarity to a normal mechanical system with a space-
independent mass, and it was the basis for the particle theory of light. It turns out that
the particle velocity is proportional to n, i.e. it is larger in a denser medium. However,
the observed propagation velocity of light is proportional to 1/n, which contradicts the
concept of a particle.

(B) In this case, the curve parameter is the natural arc length in ordinary space. The equation
of motion is identical to the equation we derived for light rays in section 7.4.

(C) Now, the curve parameter l =
∫

n ds corresponds to the “light length”, i.e. the length
with respect to the metric which occurs in Fermat’s principle and which is proportional
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to the running time of light. This metric differs from the natural flat metric ds2 by a
conformal factor n2, which changes the distances but not the angles; for this reason it is
called conformally flat. With l as the curve parameter, dx/dl is equal to the phase velocity
of light. However, the price to pay is a position-dependent “mass” m = n2(x), which
makes an interpretation as a normal mechanical system in the sense of a corpuscular
theory difficult.

For none of the systems (A)–(C) is Fermat’s principle equivalent to the corresponding
mechanical variational principle. However, the equation of motion for system (B),

d
ds

(
n

dx

ds

)
= ∇n,

is just the equation for geodesics with respect to a light metric n2 ds2 = dl2 and with s as
curve parameter. Indeed, from

δ

∫
n ds = δ

∫
n

√(
dx

dt

)2

dt = 0

we obtain

0 =
∫ ∇n

√(
dx

dt

)2

· δx + n
dx/dt√
(dx/dt)2

· d δx

dt

 dt

=
∫ [

∇n · δx + n
dx

ds
· d δx

ds

]
ds =

∫
ds

[
∇n − d

ds

(
n

dx

ds

)]
δx = 0.

Fermat’s principle,

δ

∫
n

√(
dx

dt

)2

dt = 0,

has the advantage that it is completely independent of the parametrization t. Of course, for
geodesics one finds again that∫ x

x0

n ds = S(x) − S(x0). (7.52)

The mechanical analogy of Fermat’s principle in optics is the principle of Maupertuis: The
orbits for fixed energy

E = 1
2mij(x)ẋiẋj + V

follow from the variational problem:

δ

∫ √
(E − V )mik dxi dxk = 0. (7.53)

For the determination of light rays we have to set E = 0, due to the eikonal equation.
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8.1 Fermat’s principle and focal points

We have seen that in the framework of Fermat’s principle we may, independently of the
parametrization, describe light rays connecting a point x1 with a point x2 as geodesics for
the conformally flat light metric dl2 = n2 ds2, i.e. as the curves x(t) with x(t1) = x1,
x(t2) = x2, for which the length

l12 =
∫ x2

x1

n ds =
∫ s2

s1

n(x(s)) ds =
∫ t2

t1

n(x(t))

√(
dx

dt

)2

dt (8.1)

is stationary. If the two points x1 and x2 are sufficiently close, there exists exactly one shortest
light ray connecting x1 and x2, and the stationary value

l
(min)
21 = S(x2, x1) (8.2)

corresponding to this geodesic is a minimum. Up to a factor k, S(x2, x1) is the phase differ-
ence between point x1 and point x2, and it may also be interpreted as the variational functional
of a mechanical system. The minimal distance S(x2, x1) between x2 and x1 with respect to
the light metric is proportional to the minimal time for the light to get from x1 to x2.

For larger distances between x1 and x2, there may be several light rays of equal length
S(x2, x1) that connect the points x1 and x2. If there exists an r-parameter family of light
rays of equal length connecting points x1 and x2, the points x1 and x2 are called focal to
each other of rth order. In particular, x1 and x2 are called conjugated if they are focal of
second order. In this case there exists a cone with tip point x1, which has a non-vanishing
cone angle such that all rays through x1 and within this cone meet again in x2 (see fig. 8.1).
Hence, conjugated points x1 and x2 are mapped onto each other by the light rays.

Figure 8.1: Two points are called conjugated if all the rays
emitted from one point within a cone of non-vanishing cone
angle meet again at the opposite point.

We obtain an image in an optical instrument when all rays starting from special points xi

meet again at the points conjugated to xi.
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If a light ray on its way from a point x1 to a point x2 passes through a point x′
1 that is

focal to x1, then this light ray is no longer a minimal geodesic from x1 to x2. Indeed, as
fig. 8.2 shows, there exist shorter connections between x1 and x2, like, for example, the curve
x1 → x3 → x4 → x2. To construct such a shorter connection, one only has to choose points
x3 and x4 close enough to each other, such that the light ray from x3 to x4 is the unique
minimal geodesic from x3 to x4.

Figure 8.2: A light ray passing through a
focal point is not a minimal geodesic.

8.2 Perfect optical instruments

We now will investigate the possibility of constructing a perfect optical instrument, where, for
each point x, all rays leaving x meet again at a point x′ conjugate to x. We shall assume that
x′ is the first focal point of x along each ray on its way from x to x′; this implies that the rays
running from x to x′ have minimal length. We will see that the construction of perfect optical
instruments is subject to strict limitations.

Figure 8.3: Imagery in a perfect optical in-
strument: x′

2 should not lie between x2 and
x′

1.

Let us consider a minimal light ray running from x1 to the first conjugated point x′
1. Be-

tween x1 and x′
1 there will be a second point x2 on this light ray (see fig. 8.3). In a perfect

optical instrument, the light rays leaving from x2 meet at the first point x′
2, which is conju-

gated to x2. Obviously, x′
2 also lies on the light ray passing through x1, x2, and x′

1. However,
this point x′

2 is located beyond the point x′
1, and not between x2 and x′

1. Indeed, if x′
2 was

between x2 and x′
1, the geodesic from x1 to x′

1 would not be minimal, as we have just seen,
which contradicts our assumption.

Figure 8.4: Imagery of three points in a perfect optical
instrument.

Let us now look at the image of three points x1, x2, and x3 in a perfect optical instrument.
Figure 8.4 shows that

S(x′
2, x2) + S(x2, x1) = S(x′

2, x
′
1) + S(x′

1, x1),
S(x′

3, x3) + S(x3, x2) = S(x′
3, x

′
2) + S(x′

2, x2).
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By taking the sum we obtain

S(x3, x2) + S(x2, x1) = S(x′
3, x

′
2) + S(x′

2, x
′
1) + S(x′

1, x1) − S(x′
3, x3). (8.3)

As a next step, we subdivide the triangle x1, x2, x3 into a polygon by inserting more and
more points, and take the limit to a smooth curve. This leads us to the following statement:
For a perfect optical instrument, let Φ be the mapping that associates to each point x its
first conjugated point x′ = Φ(x). Furthermore, let γ = x(t) be a curve from x1 to x2 and
γ′ = Φ(x(t)) be its image under Φ. With this notation, the lengths S[γ] and S[γ′] of the
curves γ and γ′, respectively, as measured in the light metric, satisfy

S[γ′] = S[γ] + S(x′
2, x2) − S(x′

1, x1). (8.4)

Hence, the difference S[γ′] − S[γ] depends only on the initial and final points γ and γ′.
Because of eq. (8.1) we have

S[γ′] − S[γ] =
∫ t2

t1

dt

n(Φ(x(t)))

√(
dΦ(x(t))

dt

)2

− n(x(t))

√(
dx(t)

dt

)2


≡
∫ t2

t1

dt Ψ
(

x(t),
dx

dt

)
= S(Φ(x(t2)), x(t2)) − S(Φ(x(t1)), x(t1)). (8.5)

Here, the integrand, Ψ(x, dx/dt) = Ψ(x,−dx/dt), is a homogeneous function of degree
one in the argument dx/dt. Since the integral over Ψ depends only on the initial and final
points of the curve, the integrand is an exact differential:

Ψ
(

x(t),
dx

dt

)
=

dx

dt
· ∇F (x(t)).

Because Ψ(x, dx/dt) = +Ψ(x,−dx/dt), we find ∇F ≡ 0. We just proved the following
statement:

For a perfect optical instrument, the optical length of each curve γ is equal to the
length of its image Φ(γ). The optical distance S(x, x′) between a point x and its
image point x′ = Φ(x) is independent of x.

The proof outlined above is due to Carathéodory; it remains true even if we require the less
stringent condition that the perfect optical instrument shall map all points inside a small open
subset U onto an open subset Φ(U) by ray bundles with a non-vanishing opening angle.

If the refractive indices in U and Φ(U) are constant and equal, the mapping Φ can only be
a congruence, i.e. a combination of rotations, mirror reflections, and translations, without any
change of size. Such a mapping is easily realized by a simple system of flat mirrors.

8.3 Maxwell’s fish-eye

The n-dimensional sphere Sn ⊂ R
n+1 is defined to be the set

Sn =

{
(ξ1, . . . , ξn, ζ)

∣∣∣∣∣
n∑

i=1

ξ2
i + ζ2 = 1

}
. (8.6)
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On this set we define the metric

ds2 =
n∑

i=1

(dξi)2 + [dζ(ξ)]2 =
∑
i,j

(
δij +

ξiξj

1 − ξ2

)
dξi dξj , (8.7)

where ξ2 =
∑n

i=1 ξ2
i . This metric is induced by the natural metric on R

n+1, restricted to Sn.
Geodesics on Sn are the great circles on Sn, i.e. the intersections of Sn with hyperplanes
through the center of the sphere. All great circles passing through one point P of the sphere
intersect again in P′, the antipodal point of P. This fact can be utilized for the construction of
a perfect optical instrument, as follows.

Figure 8.5: Stereographic projection of a sphere.

We define the stereographic projection of a sphere S3 (excluding the north pole) onto R
3

by the following mapping (see fig. 8.5):

ξ =
x

1 + 1
4x2

, ζ =
1 − 1

4x2

1 + 1
4x2

. (8.8)

A simple calculation verifies that the stereographic projection is a conformal mapping. Indeed,

ds2 =
n∑

i=1

(dξi)2 + [dζ(ξ)]2 =
(dx)2

(1 + 1
4x2)2

. (8.9)

The mapping (8.8) maps the sphere Sn with metric (8.7) (excluding the north pole) onto R
n

with metric (8.9). Geodesics are mapped into geodesics. In particular, one property of the
sphere is preserved under this mapping: all geodesics through one point meet in a conjugated
point.

Therefore, if (by an additional trivial scale transformation) we choose the spatial depen-
dence of the refractive index n(x) to be of the form:

n(x) =
n0

1 + x2/a2
,

we obtain a perfect optical instrument called Maxwell’s fish-eye. It was discovered by J. C.
Maxwell in 1858 in a different context. The light rays in Maxwell’s fish-eye are the images of
great circles under a stereographic projection and, therefore, are also circular. (Only the great
circles passing through the north and south poles correspond to straight lines in R

3.) As for
|x| → ∞ the refractive index n(x) = n0/[1 + (x2/a2)] tends to zero, a physical realization
of Maxwell’s fish-eye is possible only in parts.
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In general, a manifold with the property that for each point P all geodesics passing through
P meet again at the first conjugated point P′ is called a Blaschke manifold or a Wiedersehen
manifold (literally a “meet again” manifold). According to a conjecture of Blaschke, any n-
dimensional Wiedersehen manifold is isometric to Sn. A proof of this conjecture exists only
for n = 2.

One can show that all conformal transformations of R
3 can be generated from rotations,

mirror reflections, translations, and inversions at the unit sphere. Therefore, Maxwell’s fish-
eye is, apart from trivial systems consisting only of plane mirrors and assuming Blaschke’s
conjecture to be right, the only perfect optical instrument.

8.4 Canonical transformations and eikonal functions

As is well known, the time evolution in a Hamiltonian system is given by a canonical trans-
formation, which means the following. Suppose we are given a phase space

P = {(x, p) | x, p ∈ R
3}, (8.10)

on which we consider the 2-form:

ω = dx ∧dp =
∑

i

dxi ∧dpi = −d
∑

pi dxi = d
∑

xi dpi. (8.11)

Then ω is closed: dω = 0. Solving Hamilton’s equations of motion for the initial data (x0, p0),
we obtain the following paths in phase space P :

Φ(x0,p0)
(t) = (x(t), p(t)) with (x0, p0) = Φ(x0,p0)

(0). (8.12)

They define a family of mappings

Φt : P �−→ P, (x0, p0) �−→ Φt(x0, p0) = Φ(x0,p0)
(t) = (xt, pt), (8.13)

and we have

dx0 ∧ dp0 = dxt ∧dpt. (8.14)

Equation (8.14) is just the defining property of a canonical transformation Φt. [In general, a
manifold M with a non-degenerate 2-form ω with dω = 0 is called a symplectic manifold.
According to a theorem of Darboux, we can define on any symplectic manifold M local co-
ordinates (xi, pi) such that ω =

∑
dxi ∧dpi. See chapter 9 for more details about symplectic

manifolds.]
In section 7.6 we have seen that light rays can be identified as the orbits with energy E = 0

of suitable mechanical systems. The Lagrange function of the mechanical systems can be any
of the three functions listed in table 7.1:

L1 = 1
2 ẋ2 + 1

2n2, L2 = 1
2nẋ2 + 1

2n, L3 = 1
2n2ẋ2 + 1

2 , (8.15)

and, because of Fermat’s principle (eq. 8.1), we may also take

L4 = n
√

ẋ2.
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Therefore, to any system of geometrical optics we can assign a phase space P = {(x, p)}. In
all cases we have

p =
∂L

∂ẋ
= nσ, (8.16)

where σ is a unit vector along the direction of the light ray.
For an arbitrary parameter t along the light ray, the mapping

Φt : (x0, p0) �−→ Φt(x0, p0) = (xt, pt)

is a canonical transformation.
A canonical transformation can always be constructed from a generating function. In order

to see how to get such a function, we consider the following 2-form on the Cartesian product
P × P of the phase space with itself:

Ω = dx0 ∧dp0 − dx ∧dp. (8.17)

If (x, p) is obtained from (x0, p0) by a canonical transformation Φ, we find Ω = 0. Moreover,
given a transformation Φ : P → P , we consider the graph of Φ:

graph Φ = {(x0, p0), Φ(x0, p0)}⊂P × P. (8.18)

Φ is a canonical transformation if and only if Ω vanishes on the submanifold graph Φ of
P × P .

We now assume that it is possible to introduce (x0, x) as local coordinates on graph Φ.
This will always be the case for our geometrooptical system, when a light ray traveling from
x0 to x is uniquely determined by its initial and final points such that, in particular, p0 and
p are already determined by x0 and x. This condition is fulfilled as long as x and x0 are not
focal with respect to each other. Written in the coordinates (x0, x), we find for graph Φ:

Ω = dx0 ∧dp0 − dx ∧dp = d(p(x, x0) · dx − p0(x, x0) · dx0) = 0. (8.19)

Therefore, there exists, at least locally, a function S(x, x0) such that

p · dx − p0 · dx0 = dS(x, x0), (8.20)

i.e.

p =
∂S

∂x
, p0 = − ∂S

∂x0
. (8.21)

Indeed, for the cases of classical mechanics and geometrical optics, we already know such
a function S(x, x0): it is the action functional or eikonal function S(x, x0) introduced in
chapter 7, which gives us the optical distance between the points x0 and x. This function
S(x, x0) is also called the point characteristic or point eikonal, and it is a solution of the
eikonal equation (∇xS)2 = n2.
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When x0 and x are conjugate points, it is more appropriate to introduce the initial position
x0 and the final momentum p as local coordinates on graph Φ. Indeed, in this case, a light ray
should be uniquely determined by x0 and p. Now,

0 = dx0 ∧dp0 − dx ∧dp = d(−x(p, x0) · dp − p0(p, x0) · dx0),

and there exists a function M(p, x0), the so-called mixed characteristic, for which

dM(p, x0) = −x · dp − p0 · dx0, i.e. x = −∂M

∂p
, p0 = −∂M

∂x0
. (8.22)

The function M(p, x0) follows from the point characteristic S(x, x0) by a Legendre trans-
formation from the variable x to the variable p:

M(p, x0) = S(x(p, x0), x0) − p · x(p, x0),
∂M

∂x0
=

∂S

∂x0
+

∂S

∂x
· ∂x

∂x0
− p · ∂x

∂x0
=

∂S

∂x0
= −p0, (8.23)

∂M

∂p
=

∂S

∂x
· ∂x

∂p
− x − p

∂x

∂p
= −x.

If, in an environment of x and x0, the light rays are straight lines, one obtains the
mixed characteristics from the point characteristics by a simple geometrical construction:
M(p, x0) = S(x′, x0), where x′ is constructed from x by going back along the ray with
momentum p to the point where p · x′ = 0 (see fig. 8.6).

Figure 8.6: Construction of the mixed characteristics from the point characteristics.

Introducing p0 and p as coordinates on graph Φ, we obtain the angle characteristic or the
angle eikonal:

T (p, p0) = S(x0(p, p0), x(p, p0)) − p · x(p, p0) + p0 · x0(p, p0). (8.24)

We find that

∂T

∂p
= −x,

∂T

∂p0

= x0. (8.25)

One obtains additional eikonal functions by Legendre transformations with respect to arbitrary
coordinates xi, pi or x0i, p0i.
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On the other hand, from the procedure just described, it should be obvious that for a given
eikonal function F one can reconstruct a canonical transformation Φ such that the variables
of F are coordinates on graph Φ. For instance, from

p =
∂S(x, x0)

∂x
, p0 = −∂S(x, x0)

∂x0
,

solving for p and x, we obtain a canonical transformation

(x, p) = Φ(x0, p0).

If the generating functions of the canonical transformations

Φ : (x1, p1) �−→ (x2, p2),
Ψ : (x2, p2) �−→ (x3, p3)

are known, we can easily determine the generating functions of the combined transformation:

Ψ ◦ Φ : (x1, p1) �−→ (x3, p3).

For point characteristics one obtains

S31(x3, x1) = S32(x3, x2) + S21(x2, x1), (8.26)

where x2 has to be determined from the condition

∂S32

∂x2
+

∂S21

∂x2
= 0. (8.27)

This is a consequence of Fermat’s principle. It means that a ray which, on its way from x1 to
x3, passes through x2 will not have a kink at x2.

For mixed characteristics one finds

M31(x3, p1) = M32(x3, p2) + T21(p2, p1), (8.28)

with

∂M32

∂p2

+
∂T21

∂p2

= 0. (8.29)

This condition implies that a ray is continuous.

8.5 Imaging points close to the optic axis by wide spread
ray bundles

We have seen that no “interesting” perfect optical instruments exist. Therefore, we now want
to investigate the possibility of imaging at least certain curves or planes using optical instru-
ments.
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Figure 8.7: Imaging some segment I0 of the optic
axis near z0 = 0 onto some other segment I of the
axis near z = 0.

In this context we will mainly deal with the following situation, which is of greatest prac-
tical relevance: there should exist an optic axis, i.e. a straight light ray such that the optical
arrangements are rotationally symmetric with respect to this axis as well as mirror-symmetric
with respect to planes containing this axis.

We first discuss the problem of imaging a segment I0 of the optic axis around the point
z0 = 0 onto some other segment I of the axis around z = 0 (see fig. 8.7). If each ray
emanating from some point in I0 arrives back at the optic axis at a point in I , we can easily
show by restricting a suitable eikonal function to the submanifold x0 = y0 = x = y = 0 that
the transformation

(z0, p0) �−→ (f(z0, p0), g(z0, p0)) = ϕ(z0, p0) = (z, p) (8.30)

is canonical, i.e.

dz0 ∧dp0 = df ∧dg =
(

∂f

∂z0

∂g

∂p0
− ∂f

∂p0

∂g

∂z0

)
dz0 ∧dp0,

and thus

∂f

∂z0

∂g

∂p0
− ∂f

∂p0

∂g

∂z0
= 1. (8.31)

Here, p0 = n0 cos θ0 and p = n cos θ are the components along the optic axis of p0 and p,
respectively.

Now we require that, at least up to linear terms in z and z0, the interval I0 is mapped onto
I , i.e. in the linearized approximation,

z = f(z0, p0) = a(p0)z0 + b(p0),

p = g(z0, p0) = c(p0)z0 + d(p0),
(8.32)

the following statements hold:

• b(p0) ≡ 0, because z0 = 0 is mapped onto z = 0;

• a(p0) ≡ a independently of p0, because all rays passing through z0 will meet at the same
point z.

Since the image mapping is a canonical transformation (eq. 8.31), we obtain

a(c′(p0)z0 + d′(p0)) ≡ 1,

ac′(p0) = c′(p0) ≡ 0,

d′ ≡ 1/a.
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Therefore, c(p0) ≡ c = const. and d(p0) = (1/a)p0, i.e.

z = a · z0,

p = c · z0 + d · p0, (8.33)

n cos θ = c · z0 + d · n0 cos θ0,

where ad = 1. Hence, the canonical transformation is linear. Multiplication of the equations
yields

zp = zn cos θ = acz2
0 + adz0n0 cos θ0 = acz2

0 + z0n0 cos θ0,

which holds for all θ0. Because θ0 = 0 implies θ = 0, we find that

zn = acz2
0 + z0n0.

Subtracting and using the identity 1 − cos θ = 2 sin2( 1
2θ) we finally obtain

zn sin2( 1
2θ) = z0n0 sin2( 1

2θ0). (8.34)

This so-called Herschel’s condition is a necessary condition for an image mapping from I0

onto I , mediated by ray bundles with a non-vanishing opening angle, to exist. Herschel’s
condition has many solutions.

Figure 8.8: Imaging a small surface segment F0 orthogonal to the optic axis at z0 = 0 onto a
surface segment F1 at z1 = l.

Next we consider image mappings from a small surface segment F0 orthogonal to the
optic axis at z0 = 0 onto a surface segment F1 at z1 = l (see fig. 8.8). Choosing z as the ray
parameter we can rewrite Fermat’s principle in the form:

δ

∫ l

0

dz n

√
1 +

(
dx1

dz

)2

+
(

dx2

dz

)2

= 0.

We easily see that, with the conjugated momentum

∂L

∂
∂xi

∂z

= pi = n
dxi/dz√

1 +
(

dx1

dz

)2

+
(

dx2

dz

)2
= n sin θi,

the transformation

(x0, p0) �−→ (f(x0, p0), g(x0, p0)) (8.35)
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has to be canonical. Here x0 and x as well as p0 and p are vectors orthogonal to the optic
axis. Taking into account the axial symmetry as well as the mirror symmetry, we obtain in
linear approximation in x0:

x = A(|p0|)x0 + B(|p0|)p0,

p = C(|p0|)x0 + D(|p0|)p0,

where (x, p) and (x0, p0) are called ray coordinates at z1 = l and z0 = 0. The requirement
that, independently of p0, the point x0 is mapped onto x implies again that

A(|p0|) ≡ A = const., B(|p0|) ≡ 0,

and linearity follows from the canonical character of the mapping:

C ≡ const., D = 1/A.

So we find the following:

x = Ax0,

p = Cx0 + Dp0.
(8.36)

Due to the symmetry of the problem, we may choose all vectors to be in the xz plane such
that

x = Ax0, n sin θ = Cx0 + Dn0 sin θ0.

Multiplying the two equations together and neglecting ACx2
0, which is small compared to the

other terms, we find Abbe’s sine condition (discovered first in 1864 by R. Clausius and again
in 1874 by H. von Helmholtz, and once more rediscovered and applied by E. Abbe in 1879),

xn sin θ = x0n0 sin θ0, (8.37)

to be the necessary condition for the existence of an image mapping from F0 onto F1. There
are many ways for Abbe’s sine condition to be satisfied. Two points z0 and z1 on the optic
axis, for which Abbe’s condition is satisfied for two surface segments F0 in z0 and F1 in z2,
are called aplanatic points. One can show that, apart from “trivial” perfect instruments, no
more than one pair of surfaces can be mapped onto each other.

8.6 Linear geometrical optics and symplectic
transformations

We consider two surfaces, F0 and F , which are transverse to a reference ray (see fig. 8.9). A
nearby second ray emanating from F0 at x0 with momentum p0 will traverse F at point x
with momentum p. The transformation

(x0, p0) �−→ (x, p) = Φ(x0, p0)
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Figure 8.9: Linearization around a refer-
ence ray.

is canonical. As long as we only consider rays close to the reference ray, we can linearize
the canonical transformation around x0 and p0. Linear canonical transformations are called
symplectic transformations.

It is worth while to study these transformations in general. For this purpose, we first intro-
duce the fundamental concept of a symplectic vector space.

Definition 8.1. A symplectic vector space (V,J ) is a vector space V together with a non-
degenerate antisymmetric bilinear form J defined on V .

In this section, V will be a symplectic vector space over R. Notice, here and in the following,
the close analogy with a Euclidean vector space on which a symmetric positive definite (and
thus non-degenerate) bilinear form is defined.

Definition 8.2. Let W ⊂V be a subspace; then W⊥ is defined by W⊥ = {x | J (x, w) = 0
for all w ∈W}.

We find that dimW + dim W⊥ = dim V and W⊥⊥ = W . In general, however, we have
W ∩W⊥ �= {0} and W + W⊥ �= V , which is different from the Euclidean case.

Definition 8.3. A subspace W ⊂V is called symplectic if J , restricted to W , is non-degen-
erate.

In this case, W⊥ ∩W = {0} and V = W ⊕ W⊥, and from W⊥⊥ = W we can deduce that
also W⊥ is symplectic.

Definition 8.4. A subspace W ⊂V is called isotropic if J vanishes identically on W .

This condition is equivalent to W ⊂W⊥.

Definition 8.5. A subspace W ⊂V is called co-isotropic if W⊥ ⊂W .

Definition 8.6. A maximally isotropic subspace is called a Lagrangian subspace.

This means that x ∈W⊥ ⇒ x ∈W , i.e. W⊥ ⊂W , and therefore W = W⊥. In particular,
we have 2 dimW = dim V , and because there are always symplectic subspaces we find that
symplectic vector spaces are always even-dimensional.

Definition 8.7. An isomorphism S : (V1,J1) → (V2,J2) is called symplectic if J2(Sv, Sw)
= J1(v, w) for all v, w ∈V1. A symplectic isomorphism S : (V,J ) → (V,J ) is called a
symplectic transformation. The set of symplectic transformations of V forms a group Sp(V ).

The linearization of a canonical transformation Φ mentioned at the beginning of this section
will be the most important example of a symplectic isomorphism for us. In this case, V1 and V2

are the variations around (x0, p0) and Φ(x0, p0), and J1 and J2 are given by the 2-form ω in
eq. (8.11) at the points (x0, p0) and Φ(x0, p0) of the phase space. Mathematically speaking,
there is a symplectic isomorphism TmΦ : TmP �−→ TΦ(m)P of the tangent spaces.
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Theorem 8.1. For any symplectic vector space of finite dimension, there exists a symplectic
basis (e1, . . . , en, f1, . . . , fn) such that J (ei, ej) = J (fi, fj) = 0 and J (ei, fj) = δij .

Proof: Choose e1 �= 0 arbitrary and f1 such that J (e1, f1) = 1. Then f1 exists because J is
non-degenerate. Now proceed by induction. Let W be the symplectic subspace spanned by e1

and f1, consider W⊥, and construct e2 and f2 as above, etc. �
Again we see that symplectic vector spaces are even-dimensional. We can easily con-

vince ourselves that, for any subspace W ⊂V , we can find an adapted symplectic basis
(e1, . . . , en, f1, . . . , fn) such that

(e1, . . . , er, f1, . . . , fs) where n ≥ r ≥ s ≥ 0

is a basis of W . This leads to the following relations:

W symplectic ⇐⇒ r = s,

W isotropic ⇐⇒ s = 0,

W co-isotropic ⇐⇒ r = n,

W Lagrangian ⇐⇒ r = n, s = 0.

With respect to a symplectic basis, J is represented by a matrix(
0 1

−1 0

)
,

where 1 is the n × n unit matrix. The theorem given above implies the isomorphy of all
symplectic vector spaces of the same dimension. With respect to a basis, a symplectic trans-
formation is represented by a matrix S that satisfies

tSJS = J or tS = JS−1J −1.

The eigenvalues of a symplectic transformation satisfy:

det(S − λ1) ⇐⇒ det(tS − λ1) = 0,
⇐⇒ det(JS−1J−1 − λ1) = 0,
⇐⇒ det(λS − 1) = 0,

⇐⇒ det[S − (1/λ)1] = 0.

So, if λ is an eigenvalue of a symplectic transformation, so are 1/λ and (because of the reality
of S), λ and 1/λ.

The series of powers Sm of S is bounded only if all eigenvalues of S lie on the unit circle
(see fig. 8.10). If all eigenvalues of S are simple and lie on the unit circle, this property also
holds for all symplectic transformations S′ in a sufficiently small neighborhood of S.

As is well known, orthogonal transformations R have determinant detR = ±1. However,
for a symplectic transformation S, we always find detS = 1. This follows immediately from
the defining property of a symplectic transformation:

J ′ = tSJS = J .
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Figure 8.10: Only if all eigenvalues of S lie on the unit circle is
the series of powers Sm of S bounded.

Indeed, using the 2n-dimensional totally antisymmetric ε-tensor we can define the quantity

D = εi1i2...i2n−1i2n
Ji1i2 · · · Ji2n−1i2n

and we obtain

D = D′ = εi1i2...i2n−1i2n
Sj1i1 · · ·Sj2ni2n

Jj1j2 · · · Jj2n−1j2n

= εj1j2...j2n−1j2n
detS Jj1j2 · · · Jj2n−1j2n

= detS · D.

Interpreted in a coordinate-free notation, this is just the invariance of J ∧ · · · ∧J . For dimV
= 2, the symplectic group Sp(V ) is equal to the group SL(V ) of linear mappings with deter-
minant 1. The eigenvalues of S can be determined from the equation:

λ2 + λ trS + 1 = 0.

The series Sm is bounded if tr S < 2 and unbounded if trS > 2.

8.7 Gaussian optics and image matrices

Now we consider systems with one optic axis, which are the most relevant applications of
symplectic mappings. For a ray with a small inclination relative to the optic axis, we obtain a
symplectic mapping that associates the coordinates of the penetration point and the inclination
of the light ray for a plane F0 perpendicular to the optic axis at the point z0 to the coordinates
of the penetration point and the inclination of this light ray at the plane F at the point z on the
optic axis:

x = Ax0 + Bp0,

p = Cx0 + Dp0,
(8.38)

where A, B, C, and D are linear mappings R
2 → R

2.
Because of the rotational symmetry around the optic axis and the mirror symmetry at

planes containing the optic axis, A, B, C, and D must be constants (A = a1, B = b1, . . .).
The only constraint is ad− bc = 1. This approximation to geometrical optics is called Gauss-
ian optics. If we assume the vectors x, x0, p, and p0 to be all in the xz plane, the transfor-
mation of the ray coordinates can be represented, in the linearized approximation, by a 2 × 2
matrix

T10 =
(

a b
c d

)



8.7 Gaussian optics and image matrices 135

with det T10 = 1:(
x

p

)
=

(
a b
c d

) (
x0

p0

)
. (8.39)

For small inclination angles θ and θ0, we can write:

p0 = n0 sin θ0 ≈ n0θ0, p = n sin θ ≈ nθ.

If we denote by T10 the mapping from plane F0 to plane F1, and by T21 the mapping from F1

to F2, the combined matrix T20 = T21 ◦ T10 represents the mapping from F0 to F2.
If b = 0, we find x = ax0 independently of p0. All rays through x0 (with small inclination

angle relative to the axis) pass through x. In this case the planes are mapped onto each other
pointwise and are mutually conjugated. Then a = 1/d is the enlargement of this mapping.

If c = 0, we have p = dp0 independently of x0. Rays that are parallel in F0 remain
parallel in F . In this case, T10 is called telescopic, because a telescope adjusted to infinity has
this property.

Two different basic elements serve as components of a general optical system of lenses
and mirrors:

• Interspaces with constant refractive index n (fig. 8.11).

Figure 8.11: The interspace with a refractive index n as
an optical unit element.

In this case we have

p2 = p1, x2 = x1 + lθ = x1 +
l

n
p1,

and the optical matrix for such an interspace is given by

SL =
(

1 L
0 1

)
with L =

l

n
, (8.40)

where L = l/n is the so-called optical length.

• Refracting surfaces (fig. 8.12). (A mirror can also be treated like a refracting surface if
the optic axis is reversed.) We confine the discussion to surfaces that are rotationally
symmetric and have the optic axis as their normal. Furthermore, we assume the rays to
be close to the axis.

From fig. 8.12 we read off:

x2 = x1, n1(α − θ1) = n2(α − θ2),
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Figure 8.12: A refracting surface as an optical element.
The same considerations apply for mirrors if the optic
axis is reversed.

i.e.

x2 = x1, p2 = p1 + (n2 − n1)α = p1 +
n2 − n1

R
x1,

SB =
(

1 0
B 1

)
, B =

n2 − n1

R
, (8.41)

where B = (n2 − n1)/R is called the dioptric power (refractive power) of the surface.

We now list some examples of combinations of these basic optical elements.

1. Combination of optical units:

SL1 ◦ SL2 = SL1+L2 , SB1 ◦ SB2 = SB1+B2 . (8.42)

In particular, if we consider a thin lens as a system with two refracting surfaces of negli-
gible distance apart, we obtain

Sf =
(

1 0
−1/f 1

)
with − 1

f
= (n2 − n1)

(
1

R2
− 1

R1

)
. (8.43)

We find

Sf

(
x

p

)
=

(
x′

p′

)
=

(
x

−x/f + p

)
,

i.e. x′ = x; only the inclination changes.

2. Interspace–thin lens–interspace system:

S21 = SL2 · Sf · SL1 =
(

1 − L2/f L1 + L2 − (L1L2/f)
−1/f 1 − L1/f

)
. (8.44)

For L2 = f we find

S12 =
(

0 f
−1/f 1 − L1/f

)
,

i.e. x2 = fp1. Hence, all parallel rays with inclination p1 will pass through the single
point x2 = fp1 in the “back focal plane” behind the thin lens at a distance f . In particular,
rays parallel to the axis (having inclination p1 = 0) pass through the back focal point
x2 = 0.



8.7 Gaussian optics and image matrices 137

For L1 = f we find

S12 =
(

1 − L2/f f
−1/f 0

)
,

i.e. p2 = −x1/f . All rays passing through the point x1 in the “front focal plane” will
be mapped, independent of their inclination, into parallel rays with inclination p2 =
−1/fx1. Those rays passing through the front focal point x1 = 0 will be parallel to the
axis behind the lens. These circumstances may be used for a geometrical construction of
the image mapping by a thin lens (see fig. 8.13). The two planes F1 and F2 are conjugated
if L1 + L2 − (L1L2)/f = 0, or

1
L1

+
1
L2

=
1
f

. (8.45)

This is the famous lens formula.

Figure 8.13: Imaging by a thin lens.

3. Lens–interspace–lens system:

S21 = Sf2SLSf1 =
(

1 − L/f1 L
−1/f1 − 1/f2 + (L/f1f2) 1 − L/f2

)
. (8.46)

The resulting dioptric power (refractive power) is given by

1
fres

=
1
f1

+
1
f2

− L

f1f2

(
=

L

f2
for f1 = −f2 = f

)
. (8.47)

A converging lens in combination with a diverging lens of opposite power results in a
converging system.

4. Normal form of optical systems:(
a b
c d

)
with ad − bc = 1

is the optical matrix of a Gaussian system that maps the ray coordinates (x1, p1) in plane
F1 into the ray coordinates(

x2

p2

)
=

(
ax1 + bp1

cx1 + dp2

)
in plane F2.
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We now will assume that c �= 0, i.e. the system is non-telescopic. Telescopic systems can
be reduced to non-telescopic systems by combining them with a fixed lens mapping.

A look at eq. (8.44) tells us that any non-telescopic image matrix can be written in the
form S21 = SL2SfSL2 with uniquely determined values for f , L1, and L2. On the other
hand, there are uniquely determined values for h1 and h2 such that(

1 −h2

0 1

) (
a b
c d

) (
1 −h1

0 1

)
=

(
1 0

−1/f 1

)
= Sf ,

with f = −1/c.

This observation admits the following interpretation. Consider the front principal plane
H1, which is located behind F1 with optical length h1 and the back principal plane
located in front of F2 with optical length h2. For this case, the Gaussian mapping of
rays from H1 to H2 is simply the mapping Sf of a thin lens with f = −1/c. Hence,
knowing the position of the principal planes allows for a simple construction of the ray
mapping. The front and back focal planes, B1 and B2, are at a distance f in front of H1

and behind H2, respectively. Rays parallel to the axis are transformed into rays through
the back focal point, and rays passing though the front focal point are transformed into
rays parallel to the axis (see fig. 8.14). The lens formula 1/L1 + 1/L2 = 1/f holds, if
L1 and L2 are interpreted as the distances from the two principal planes.

Figure 8.14: Location of the principal planes H1 and H2 as well as the focal planes B1 and B2

in the normal form of an optical system.

From the general form of a non-telescopic Gaussian optical matrix,

G = SL1SfSL2 =
(

1 − L2/f L1 + L2 − L1L2/f
−1/f 1 − L1/f

)
,

and considering the case in which F1 and F2 are conjugated (L1 + L2 − L1L2/f = 0), one
finds the longitudinal magnification

vl =
dl2
dl1

=
n2

n1

dL2

dL1
.
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Indeed, from dL1 + dL2 − (L1/f)dL2 − (L2/f)dL1 = 0 we obtain

dL2

dL1
= −1 − (L2/f)

1 − (L1/f)
,

vl =
n2

n1

1 − (L2/f)
1 − (L1/f)

.

On the other hand, the transverse magnification is given by

vt =
x2

x1
= 1 − L2

f
=

1
1 − L1/f

,

and we find

vt =
n2

n1
v2
t .

This proves that Herschel’s condition,

z1n1 sin2(θ1/2) = z2n2 sin2(θ2/2),

and Abbe’s sine condition,

x1n1 sin θ1 = x2n2 sin θ2,

are incompatible for θ1 �= θ2, because they yield

vl =
n1

n2

sin2(θ1/2)
sin2(θ2/2)

,

vt =
n1

n2

sin θ1

sin θ2
,

i.e. vl �= (n2/n1)v2
t for θ1 �= θ2. This fact agrees with the non-existence of non-trivial perfect

optical instruments, for which the two conditions should be fulfilled.

8.8 Lens defects and Seidel’s theory of aberrations

As we have seen, in Gaussian optics the mapping of the ray coordinates from plane F0 to F
is given by

x = ax0 + bp0,

p = cx0 + dp0,
with ad − bc = 1. (8.48)

Within the Gaussian approximation the eikonal functions SG(x, x0) and MG(p, x0) can be
determined up to irrelevant constants by solving for x, x0 and p, x0, respectively:

p0 =
1
b
(x − ax0), p =

1
b
(dx − x0),
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and since ∂SG/∂x = p and ∂SG/∂x0 = −p0, we find that

SG(x, x0) =
1
2b

(dx2 − 2x · x0 + ax2
0) + const. (8.49)

Obviously, S is only defined for b �= 0, i.e. when F and F0 are not conjugate. Similarly, one
finds

p0 =
1
d
(p − cx0), x =

1
d
(x0 + bp),

and since ∂MG/∂p = −x and ∂MG/∂x0 = −p0, we obtain for the mixed characteristics
within the Gaussian approximation:

MG(p, x0) = − 1
2d

(bp2 + 2p · x0 − cx2
0). (8.50)

MG is defined even for b = 0. In a similar way we get

TG(p, p0) = − 1
2c

(ap2 − 2pp0 + dp2
0). (8.51)

We now assume that, in a Gaussian approximation, the planes F0 and F are conjugated
and we want to determine systematically the defocussing effect of the next-to-leading terms.
This is called Seidel’s theory of aberrations.

A suitable quantity for this purpose is the mixed characteristic M(p, x0), which we write
in the form

M(p, x0) = MG(p, x0) + M1(p, x0)

=
1
2d

(cx2
0 − 2p · x0) + M1(p, x0), (8.52)

where M1 contains terms in p and x0 which are of higher than second order. (Since F0 and
F1 are conjugate, we have b = 0 in the Gaussian approximation.) Because of the rotational
invariance of the system, M1 can only depend on the invariant terms u = x2

0, v = p2, and
w = 2x0 ·p. The lowest non-trivial contributions in a Taylor expansion of M1 are of the form

M1(p, x0) = −[ 14Fu2 + 1
4Av2 + 1

8 (C −D)w2 + 1
2Duv + 1

2Euw + 1
6Bvw]. (8.53)

Note that, due to the rotational invariance, there are no terms of third order. From this we get

x = −∂M

∂p
= −∂MG

∂p
− ∂M1

∂p
= xG + ∆x =

1
d
x0 + ∆x. (8.54)

While xG = (1/d)x0 is independent of p, the expression ∆x = −∂M1/∂p will, in general,
depend on p such that the system is no longer focussing. The deviations will increase with
increasing x0 and p. A short calculation gives

∆x = −∂M1

∂p
= [Eu + 1

3Bv + 1
2 (C − D)w]x0 + [Av + Du + 1

3Bw]p. (8.55)
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The relevance of the different contributions becomes most obvious in polar coordinates for p:

x0 = (x0, 0), p = p(cosϕ, sin ϕ),

i.e.

u = x2
0, v = p2, w = 2x0p cosϕ,

and

∆x1 = Ap3 cos ϕ + 1
3Bp2x0(2 cos2 ϕ + 1) + Cpx2

0 cos ϕ + Ex3
0,

∆x2 = Ap3 sin ϕ + 2
3Bp2x0 sin ϕ cos ϕ + Dpx2

0 sin ϕ.
(8.56)

Here we have ordered the terms according to increasing powers of x0 and decreasing powers
of p.

• The first term,

∆xA = Ap2p, (8.57)

is called spherical aberration. It is independent of x0 and can be suppressed by a small
aperture such that only rays that are almost parallel to the axis can pass.

• The second term can be written in the form

(∆xB
1 , ∆xB

2 ) = 1
3Bp2x0(2 + cos 2ϕ, sin 2ϕ). (8.58)

Keeping x0 and p fixed, which may be realized by a screen with a circular aperture,
(∆xB

1 , ∆xB
2 ) describes a circle of radius 1

3Bp2x0 and central point ( 2
3Bp2x0, 0). If p

is varied within the interval 0 ≤ p ≤ ρ, one obtains a picture like that in fig. 8.15. The
corresponding image defect increases with x0p

2 and is called coma (presumably because
of its similarity with a comet).

Figure 8.15: Coma is a type of aberra-
tion that deforms the image of a point in a
characteristic way.

• The third term,

(∆xC
1 , ∆xC

2 ) = px2
0(C cos ϕ, D sin ϕ), (8.59)

is called astigmatism (“having no point”). Keeping x0 and p fixed, (∆xC
1 , ∆xC

2 ) de-
scribes an ellipse, which degenerates to a circle for C = D. If one tries to improve
focusing by a small displacement L of the image plane, one finds

(∆x′c
1 , ∆x′c

2 ) =
(
(Cx2

0 + L)p cosϕ, (Dx2
0 + L)p sinϕ

)
. (8.60)
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As long as C �= D, the two terms ∆x′c
1 and ∆x′c

2 cannot vanish simultaneously. As
a result of astigmatism, the image of x0 is not a point but consists of two mutually
orthogonal image lines of length 2|C − D|x2

0p. Their respective distances from x are
−Cx2

0 and −Dx2
0.

• Finally, the last term in eq. (8.56) has the form

∆x = Ex2
0x0. (8.61)

It is independent of p and thus does not influence the focussing properties of the system.
However, it results in a distortion of the image. A rectangular net is mapped onto a
distorted net like the ones shown in fig. 8.16. Depending on the sign of E, one speaks of
a barrel distortion (E > 0) or a pin-cushion distortion (E < 0).

Figure 8.16: Barrel distortion (left)
and pin-cushion distortion (right) of a
rectangular lattice.

Any of the above-mentioned aberrations can be avoided or suppressed by a suitable construc-
tion of the optical system.

Apart from these geometrical lens defects, we also have chromatic aberration, i.e. a distur-
bance of the image by a wavelength dependence of the refractive index. It can be suppressed
by combining different glass types. Furthermore, there are distortions due to diffractive effects,
which are beyond the realm of geometrical optics.



9 Geometric theory of caustics

In this chapter, we will first generalize the discussion on short-wave asymptotics to more
general partial differential equations. Then we will give a brief introduction to the geometric
theory of characteristics, Lagrangian manifolds, and caustics.

9.1 Short-wave asymptotics for linear partial differential
equations

Let

H

(
x,− i

k
∂

)
= A(x) +

N∑
r=1

(
− i

k

)r

Ai1...ir
(x)

∂

∂xi1
· · · ∂

∂xir
(9.1)

be a general linear differential operator of order N acting on scalar functions

u : R
n −→ C.

If, in the differential operator, we replace all derivatives −(i/k)(∂/∂xj) by pj ∈ R, we obtain,
for x, p ∈R

n, a function H(x, p) : R
2n → C, which is called the symbol σH of the differential

operator. We shall always assume that H(x, p) has a zero in p for any x ∈ R
n. For a linear

differential operator, H(x, p) is a polynomial in p. However, one may generalize the above
considerations to so-called pseudo-differential operators, for which H(x, p), as a function of
x and p, should not increase too rapidly.

For commutators of differential operators we find the important identity:

σ[A,B] =
1
ik
{σA, σB} + O(k),

where {σA, σB} is the Poisson bracket of the symbols. This relation is fundamental for the
theory of the classical limit of quantum mechanics.

We are interested in the asymptotic behavior of solutions of the partial differential equation

H

(
x,− i

k
∂

)
u(x) = 0 (9.2)

for large values of k. As explained in chapter 7, we insert the following ansatz into the differ-
ential equation:

u(x) = ϕk(x) eikS(x), ϕk(x) = ϕ0(x) +
1
k

ϕ1(x) + · · ·. (9.3)
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In this way we find differential equations for the quantities S and ϕi. We will discuss the first
two orders in 1/k explicitly.

The ansatz (9.3) is well known in the theory of quasi-classical approximations to quantum
mechanics and goes by the name of the WKB ansatz for the wave function. In this context, the
variable k is replaced by 1/�, the inverse of Planck’s constant. The relation between classical
mechanics and quantum mechanics is the same as the one between geometrical optics and
wave optics.

If, for arbitrary ξ ∈ R
n, we define the operator

D = ξj
∂

∂xj
, (9.4)

we obtain immediately that

− i
k

D eikS = eikSDS,(
− i

k
D

)2

eikS = eikS

(
(DS)2 − i

k
D2S

)
, (9.5)

...(
− i

k
D

)r

eikS = eikS

{
(DS)r − i

k

(
r

2

)
(DS)r−2D2S + O

(
1
k2

)}
.

Furthermore, Leibniz’s rule tells us(
− i

k
D

)r

ϕk eikS (9.6)

= eikS

{
(DS)rϕk − i

k

(
r

2

)
(DS)r−2D2Sϕk − i

k
r(DS)r−1Dϕk + O

(
1
k2

)}
.

In the explicit calculation of H(x,−(i/k)∂)ϕk eikS , we encounter terms of this form, and we
finally obtain

H

(
x,− i

k
∂

)
ϕk eikS

= eikS

{
H(x, ∂S)ϕ0 − i

k

[
1
2

∂2H

∂pi∂pj

∂2S

∂xi∂xj
ϕ0 +

∂H

∂pi

∂ϕ0

∂xi

]
+

1
k

H(x, ∂S)ϕ1 + O
(

1
k2

)}
. (9.7)

In zeroth order we find the so-called characteristic equation

H(x, ∂S) = 0, (9.8)

and in first order the transport equation

∂H(x, ∂S)
∂pi

∂ϕ0(x)
∂xi

+
1
2

∂2H(x, ∂S)
∂pi ∂pj

∂2S(x)
∂xi ∂xj

ϕ0(x) = 0. (9.9)
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The special case we discussed so far is Helmholtz’s equation,

−
(

1
2k2

∆ +
1
2
n2

)
u = 0, (9.10)

and it is of special importance for optics.
In this case, the symbol function is given by

H(x, p) = 1
2p2 − 1

2n2. (9.11)

The characteristic equation,

1
2 (∇S)2 − 1

2n2 = 0, (9.12)

is the eikonal equation, and the transport equation reads

∇S · ∇ϕ0 + 1
2ϕ0∆S = 0. (9.13)

It agrees with eq. (7.22) given in chapter 7.
The solutions of the characteristic equation (9.8) and the transport equation (9.9) can be

obtained from the Hamiltonian system of ordinary differential equations:

ẋi =
∂H(x, p)

∂pi
, ṗi = −∂H(x, p)

∂xi
.

On the other hand, a solution of the characteristic equation leads to solutions of the Hamilton-
ian system, which again shows the connection between wave theory and classical mechanics.
In the next section we shall see that the following problems are intimately related.

A) Solution of the linear partial differential equation of nth order:

H

(
x,− i

k
∂

)
u = 0,

for large values of k.

B) Solution of the characteristic equation, i.e. the nonlinear partial differential equation of
first order:

H(x, ∂S) = 0,

as well as the transport equation.

C) Solutions of the nonlinear system of ordinary differential equations:

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
,

which are sometimes called the characteristics for the differential equation A.

These relations will be explained in the following sections. As an aside we note that this theory
can be generalized to linear partial differential equations for m-component vector functions:

u : R
n −→ C

m.

However, for this complicated case, one has to introduce m eikonal functions Si

(i=1, . . . , m).
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9.2 Solution of the characteristic equation

In this section, we will describe the relation between the solutions of Hamilton’s equations,

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, (9.14)

and the characteristic equation

H(x, ∂S) = 0. (9.15)

For Helmholtz’s equation (9.10), the corresponding Hamiltonian system,

ẋ = p, ṗ = 1
2∇n2, i.e. ẍ = 1

2∇n2, (9.16)

is just the “equation of motion” for light rays. In general, the following theorem holds.

Theorem 9.1. Let S(x) be a solution of the characteristic equation H(x, ∂S) = 0, and
let (xi(τ ), pi(τ )) be a solution of the Hamiltonian system ẋi = ∂H/∂pi, ṗi = −∂H/∂xi

with initial conditions: xi(0) = xi
0, pi(0) = p0i = (∂S/∂xi)(x0). Then, along the solu-

tion trajectory, we have pi(τ ) = (∂S/∂xi)(xi(τ )). Furthermore, S(x(τ )) = S(x(0)) +∫ τ

0
dτ ′ pi(τ ′)ẋi(τ ′).

Proof: We consider the path x̃(τ ), which follows from the differential equation

˙̃x
i
(τ ) =

∂H

∂pi

(
x̃(τ ),

∂S

∂x
(x̃(τ ))

)
with the initial condition x̃(0) = x0. In addition we define

p̃i(τ ) =
∂S

∂xi
(x̃(τ )) such that p̃i(0) = p0i.

We will show that (x̃(τ ), p̃(τ )) is also a solution of the Hamiltonian system. Because the
solutions of ordinary differential equations are determined uniquely by the initial conditions,
we have xi(τ ) = x̃i(τ ) and pi(τ ) = p̃i(τ ) = (∂S/∂xi)(x(τ )).

The first part of Hamilton’s equations,

˙̃x
i
(τ ) =

∂H

∂pi
(x̃(τ ), p̃(τ )), (9.17)

follows immediately from the definition of x̃i and p̃i.
From the eikonal equation, H(x, ∂S) = 0, we obtain by differentiation

∂H

∂xi
(x, ∂S) +

∂H

∂pj
(x, ∂S)

∂2S

∂xi ∂xj
= 0.

So, the second part of Hamilton’s equation is also satisfied:

˙̃pi =
d
dτ

∂S

∂xi
(x̃) =

∂2S

∂xi ∂xj
˙̃x
j

=
∂2S(x̃)
∂xi ∂xj

∂H

∂pj

(
x̃,

∂S

∂x
(x̃)

)
= −∂H

∂xi
(x̃, p̃). (9.18)
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For Helmholtz’s equation we have ẋ = p, i.e.

ẋ(τ ) = ∇S(x(τ )); (9.19)

once more we find the light rays to be the orthogonal trajectories to the surfaces of constant
phase.

Conversely, we can use the solutions of the Hamiltonian system for solving the “initial
value problem” of the characteristic equation.

Figure 9.1: Construction of a solution of the eikonal equation from an (n−1)-
dimensional hypersurface.

Let F be an (n − 1)-dimensional hypersurface in R
n defined by the equation S0(x) = 0

(see fig. 9.1). Introducing local parameters y ∈ R
n−1, the surface can be written in the form

x = x(y) such that we have S0(x(y)) ≡ 0 identically in y. For each point x(y) on F we
define p(y) = (∂S0/∂x)(x(y)). Furthermore, the Hamiltonian function should vanish on F :
H(x(y)), p(y)) = 0.

We now consider solutions of the Hamiltonian system that start from the point x(y) ∈F
with initial momentum p(y), i.e. functions ξ(τ, y) and π(τ, y) for which

∂ξ

∂τ
(τ, y) =

∂H

∂p
(ξ(τ, y), π(τ, y)),

∂π

∂τ
(τ, y) = −∂H

∂x
(ξ(τ, y), π(τ, y)), (9.20)

and

ξ(0, y) = x(y), π(0, y) = p(y) =
∂S0

∂x
(x(y)).

We now assume that ∂ξ/∂τ(0, y) is nowhere tangential to F . In a certain neighborhood of
the initial surface F , each point x ∈ R

n lies locally on exactly one trajectory ξ(τ, y). For not
too large values of τ , the mapping

ξ : (τ, y) �−→ ξ(τ, y) ∈R
n (9.21)

is invertible and smooth, i.e. it is a diffeomorphism. Under these conditions the Jacobian ma-
trix

Dξ(τ, y) =
(

∂ξ

∂τ
(τ, y),

∂ξ

∂y1
(τ, y), . . . ,

∂ξ

∂yn−1
(τ, y)

)
(9.22)

is an invertible n × n matrix and the Jacobian determinant

J (τ, y) = detDξ(τ, y) (9.23)

satisfies J (τ, y) �= 0.
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If the values of τ become larger, the mapping ξ(τ, y) may no longer be a diffeomorphism;
in particular, there may be “critical” points τ0, y0 where J (τ0, y0) = 0. This case, where paths
ξ(τ, y) with infinitesimally neighboring parameter values y intersect at a point ξ(τ0, y0), will
be of interest in our discussion of caustics.

Right now, we only consider a neighborhood of F where ξ(τ, y) is a diffeomorphism.
As an identity in τ and y we find

H(ξ(τ, y), π(τ, y)) = 0, (9.24)

because for τ = 0 this is a consequence of the initial conditions, and

∂

∂τ
H(ξ(τ, y), π(τ, y)) =

∂H

∂x
ξ̇ +

∂H

∂p
π̇ =

∂H

∂x

∂H

∂p
− ∂H

∂p

∂H

∂x
= 0.

Differentiation with respect to y yields

∂H

∂x
(ξ(τ, y), π(τ, y))

∂ξ

∂y
+

∂H

∂p
(ξ(τ, y), π(τ, y))

∂π

∂y
= 0. (9.25)

The idea for solving the characteristic equation using the solutions ξ(τ, y), π(τ, y) consists
in constructing the solution S(x) from the curves ξ(τ, y) which start at the surface F , such
that the level surfaces of S have π(τ, y) as their normal. For this purpose, we make the ansatz

S ◦ ξ(τ, y) = S(ξ(τ, y)) =
∫ τ

0

dτ ′ π(τ ′, y)
∂ξ

∂τ ′ (τ
′, y). (9.26)

If we can prove that

∂S

∂x
(ξ(τ, y)) = π(ξ(τ, y)), (9.27)

we have also proven (because of eq. (9.24)) that S is a solution of the characteristic equation
with the initial condition S(x(y)) = S0(x(y)) = 0. The chain rule gives us

∂

∂τ
S ◦ ξ =

∂S

∂x
(ξ)

∂ξ

∂τ
(9.28)

and

∂

∂y
S ◦ ξ =

∂S

∂x
(ξ)

∂ξ

∂y
. (9.29)

Since Dξ is invertible, we only have to prove that

∂

∂τ
S ◦ ξ = π

∂ξ

∂τ
(9.30)

and

∂

∂y
S ◦ ξ = π

∂ξ

∂y
. (9.31)
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Identity (9.30) follows immediately from the definition of S (eq. (9.26)). Concerning
eq. (9.31), we first find for τ = 0:

∂

∂y
S ◦ ξ(0, y) =

∂

∂y
S(x(y)) =

∂

∂y
S0(x(y)) = p(y)

∂x

∂y
= π(0, y)

∂ξ

∂y
(0, y),

due to the initial condition, and it remains to prove that

∂

∂τ

∂

∂y
S ◦ ξ =

∂

∂τ

(
π

∂ξ

∂y

)
.

However, we have that

∂

∂τ

∂

∂y
S ◦ ξ =

∂

∂y

∂

∂τ
S ◦ ξ

=
∂

∂y

(
π

∂ξ

∂τ

)
(because of eq. (9.30))

=
∂π

∂y

∂H

∂p
+ π

∂

∂τ

∂ξ

∂y
(because of Hamilton’s equations)

= −∂H

∂x

∂ξ

∂y
+ π

∂

∂τ

∂ξ

∂y
(because of eq. (9.25))

=
∂π

∂τ

∂ξ

∂y
+ π

∂

∂τ

∂ξ

∂y
(because of Hamilton’s equations)

=
∂

∂τ

(
π

∂ξ

∂y

)
,

which completes the proof. �

We find a second useful geometrical interpretation of our solution of the initial value prob-
lem for the characteristic equation by reformulating the problem not in position space but in
the 2n-dimensional phase space:

P = {(x, p) | x, p ∈ R
n}.

A submanifold Λ⊂P is called isotropic if the 2-form

ω =
n∑

i=1

dxi ∧dpi = −d
∑

pi dxi

vanishes on this submanifold. This implies that, with respect to the bilinear form ω(p), the
tangent space TpΛ to Λ is an isotropic subspace (in the sense of section 8.6) of the tangent
space TpP of P for all p ∈Λ. An isotropic submanifold Λ of P with (maximal) dimension n
is called a Lagrangian submanifold.

To the (n− 1)-dimensional initial manifold F = {x | S0(x) = 0} = {x(y)} we associate
the following (n − 1)-dimensional submanifold of the phase space:

F̃ =
{(

x(y),
∂S0

∂x
(x(y))

)}
⊂P. (9.32)
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F̃ is isotropic, because on F̃ we have

pi dxi =
∂S0

∂xi
(x(y)) dxi(y) = dS0(x(y)),

and therefore

ω
∣∣

eF
= −d dS0

∣∣
eF

= 0.

For the same reason, the manifold

ΛF = {(ξ(τ, y), π(τ, y))}⊂P, (9.33)

which one obtains by combining all solution curves of the Hamiltonian system starting on F̃ ,
is a Lagrangian submanifold of P :

pi dxi
∣∣
ΛF

= πi dξi =
∂S

∂xi
dξi = dS

∣∣
ΛF

.

For any fixed value of τ = τ0, the (n − 1)-dimensional submanifolds

F̃τ0 = {(ξ(τ0, y), π(τ0, y))} (9.34)

are isotropic and we have F̃0 = F̃ .
This formulation of the initial value problem of the characteristic equation suggests the

following important generalization: Not every (n− 1)-dimensional isotropic manifold can be
written as

F̃ =

{
(x, p)

∣∣∣∣∣S0(x) = 0, p =
∂S0

∂x

}
. (9.35)

A counter-example is the following (n− 1)-dimensional manifold associated to a given point
x0 ∈ R

n:

F̃0 = {(x, p) | x = x0, H(x0, p) = 0}.
This manifold is also isotropic, because dxi

∣∣
eF0

= 0.

Again we can use the solution trajectories starting on F̃x0 ,

(ξ(τ, y), π(τ, y)), ξ(0, y) = x0, π(0, y) = p(y), H(x0, p(y)) = 0,

for the construction of a Lagrangian submanifold Λx0 and for the determination of a solution
S(x, x0) of the characteristic equation. However, S(x, x0) will no longer be differentiable at
the point x = x0.

In this case, one considers all curves ξ(τ, y) emanating from a point x0 instead of a mani-
fold F and constructs the solutions of the eikonal equation as the level surfaces of S orthogonal
to π(τ, y) (see fig. 9.2).

For Helmholtz’s equation, this solution S(x, x0) is just the point characteristic. Because
(∇S)2 = n2, we find in a vicinity of x = x0 the solution S(x, x0) to be of the form

S(x, x0) = n(x0)|x − x0| + R(x, x0), (9.36)

where R(x, x0) is regular at x = x0 and R(x0, x0) = 0.
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Figure 9.2: A solution of the eikonal equation, which is orthogonal
to the momenta of all characteristics emanating from a point x0.

9.3 Solution of the transport equation

A solution of the transport equation,

∂H

∂pi
(x, ∂S)

∂ϕ0

∂xi
+

1
2

∂2H

∂pi ∂pj
(x, ∂S)

∂2S

∂xi ∂xj
ϕ0(x) = 0, (9.37)

with the initial value problem

ϕ0(x(y)) = ψ(y), (9.38)

can also be constructed (at least locally) from the solutions (ξ(τ, y), π(τ, y)) of the corre-
sponding Hamiltonian system.

Obviously, the first term in eq. (9.37) can be written as

d
dτ

ϕ0(ξ(τ, y)) =
∂ϕ0

∂xi

∂ξi

∂τ
(τ, y) =

∂H

∂pi
(ξ, ∂S(ξ))

∂ϕ0

∂xi
(ξ). (9.39)

The second term in the transport equation is closely related to the distortion of the volume
element J (τ, y) = detDξ(τ, y) due to the flux

∂ξ

∂τ
=

∂H

∂p
(ξ, ∂S(ξ)). (9.40)

As is well known, the relative volume distortion is given by the divergence of the vector field
on the right-hand side, i.e.

1
J

dJ
dτ

=
∂

∂ξi

∂H

∂pi
(ξ, ∂S(ξ)) =

∂2H

∂pi ∂xi
(ξ, ∂S(ξ)) +

∂2H

∂pi ∂pj
(ξ, ∂S(ξ))

∂2S

∂xi ∂xj
.

Therefore,

1
2

∂2H

∂pi ∂pj

∂2S

∂xi ∂xj
=

1√J
d
√J
dτ

− 1
2

∂2H

∂pi ∂xi
, (9.41)

and for the transport equation along the paths ξ(τ, y) we can write

d
dτ

(ϕ0 ◦ ξ) +
1√J

d
√J
dτ

ϕ0 ◦ ξ =
1
2

∂2H

∂pi∂xi
(ξ, ∂S(ξ))ϕ0 ◦ ξ

or

d
dτ

(
√J ϕ0 ◦ ξ)

(
√J ϕ0 ◦ ξ)

=
1
2

∂2H

∂pi ∂xi
(ξ, ∂S(ξ)).
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By integration we find

ϕ0(ξ(τ, y)) =

√J (0, y)√J (τ, y)
ϕ0(ξ(0, y)) exp

{∫ τ

0

dτ ′ ∂2H

∂pi ∂xi

(
ξ(τ ′, y), ∂S(ξ(τ ′, y))

)}
.

(9.42)

For the eikonal equation and, more generally, whenever the operator H(x,−(i/k)∂) is for-
mally self-adjoint, the term 1

2 (∂2H/∂pi ∂xi) in eqs. (9.41) and (9.42) vanishes.
In this case, up to terms of order 1/k2, we obtain for the equation H(x,−(i/k)∂)u = 0

the solution

u(x) =

√J (0, y(x))√J (τ (x), y(x))
ϕ0(ξ(0, y(x))) eikS(x), (9.43)

which is valid as long as ξ(τ, y) is a diffeomorphism. In this formula, τ (x) and y(x) are values
for τ and y that are uniquely determined by the condition ξ(τ (x), y(x)) = x. Notice that the
amplitude tends to infinity at the critical points where J = 0.

Looking again at Helmholtz’s equation, the equation for (d/dτ )
√J simplifies to

1√J
d
√J
dτ

= 1
2∆S(ξ(τ, y)), (9.44)

which is in agreement with the result we obtained in section 7.3. Energy conservation makes
the factor 1/

√J in the solution plausible.
As we explained in the previous section, we can construct the solution from the isotropic

submanifold

F̃x0 = {(x, p) | x = x0, H(x0, p) = 0}.

We obtain a function

G(x, x0) = A(x, x0) eikS(x,x0), (9.45)

which for x �= x0 solves the equation

H

(
x,− i

k
∂

)
G(x, x0) = 0 (9.46)

up to terms of order 1/k2 and which has a well-defined singularity at x = x0.
These relations will now be studied in more detail for the case of Helmholtz’s equation:

−
(

1
2k2

∆ +
n2

2

)
u = 0.

For a constant refractive index, n(x) ≡ 1, the light rays passing through x0 are given by

ξ(τ, p) = x0 + τp, π(τ, p) = p, p2 = 1, (9.47)
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that is, S(x, x0) = |x − x0|. For τ �= 0 the mapping ξ(τ, p) is a diffeomorphism and
J (τ (x), p(x)) = const. × (x − x0)2. So we find

G0(x, x0) =
1

|x − x0| eik|x−x0|, (9.48)

which is even defined globally as long as x �= x0 and which, for x �= x0, is an exact solution
of Helmholtz’s equation (not only up to terms of order O(1/k2)). Taking into account the
singularity at x = x0, one finds

(∆ + k2)G0(x, x0) = −4πδ(x − x0). (9.49)

Hence, G(x, x0) is the Green’s function for Helmholtz’s equation.
If n(x) �≡ const., we find similar relations. Close to x = x0 one obtains S(x, x0) =

n(x0)|x − x0| + regular terms, and
√J (τ (x, p(x))) = const. × |x − x0| + regular terms.

Therefore, at x ≈ x0, the function

G(x, x0) = A(x, x0) eikS(x,x0) (9.50)

agrees with the “free Green’s function” G0(x, x0) up to regular terms and is (at least locally
and up to non-leading terms in k) the Green’s function for Helmholtz’s equation, which in the
vicinity of x = x0 resembles an outgoing spherical wave.

At this point we will not proceed with a discussion of the equations for the quadratic and
higher orders in 1/k, which one obtains by inserting the ansatz (9.3) into the wave equation
(9.2). The initial value problem for these equations can also be solved by integration along the
characteristics ξ(τ, y), π(τ, y).

9.4 Focal points and caustics

We now turn to a discussion of the situation in which the mapping

ξ : (τ, y) �−→ ξ(τ, y) ∈R
n, (9.51)

constructed from the solutions of the Hamiltonian system, is no longer a diffeomorphism. In
this case, the solution curves (ξ(τ, y), π(τ, y)) were defined by the condition that their initial
points at τ = 0 are located in an (n − 1)-dimensional isotropic submanifold of phase space,
F̃ ⊂P . We have already mentioned two special cases:

(i) We start from an (n − 1)-dimensional surface of constant phase in space, F =
{x | S0(x) = 0}, and construct the following (n − 1)-dimensional surface in phase
space:

F̃ =

{
(x(y), p(y))

∣∣∣∣∣S0(x(y)) = 0, p(y) =
∂S0

∂x
(x(y))

}
, (9.52)

where we require H(x(y), p(y)) = 0. Here x(y) is a point of the (n − 1)-dimensional
surface F = {x | S0(x)} = 0, and p(y) points into the normal direction of F .
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(ii) In this second special case:

F̃ = F̃x0 = {(x(y), p(y)) | x(y) = x0, H(x(y), p(y)) = 0}. (9.53)

The initial point in space is fixed.

Those points x = ξ(τ, y) for which

J (τ, y) = detDξ(τ, y) = 0 (9.54)

are called focal points of F̃ , and the set of all focal points, i.e. the set Σ of all critical values
of ξ, is called the caustic of F̃ .

If x = ξ(τ, y) is not a focal point, we know from the implicit function theorem that the
mapping ξ is a diffeomorphism from at least a small neighborhood of the parameter point
(τ, y) into a small neighborhood of x.

On the other hand, a focal point is characterized as the intersection point of neighboring
trajectories ξ(τ, y) with infinitesimally different values of y. Neighboring initial points are
mapped onto the same point. However, the mapping (ξ(0, y), π(0, y)) �→ (ξ(τ, y), π(τ, y)) is
a canonical transformation, because it describes the time evolution of a Hamiltonian system,
and according to Liouville’s theorem such a mapping is volume-preserving in phase space.
Therefore, a contraction in position space must be accompanied by a stretching in momentum
space. In particular, if the Jacobian J (τ, y) vanishes at a critical point, the directions of the
different intersecting trajectories have to diverge. But as π(τ, y) is perpendicular to the wave
fronts, the different wave fronts will exhibit an irregular behavior at a focal point.

Figure 9.3: A focal point for a surface F and for a point x0.

Fig. 9.3 sketches what happens in the above-mentioned cases (i) and (ii). In case (i), the
focal points of F̃ are also referred to as the focal points of F , and in case (ii), one speaks of
the focal points of point x0, which coincides with our convention of section 8.1.

The order of a focal point x = ξ(τ, y) is defined to be n − r, where r = rank Dξ(τ, y) is
the rank of the Jacobian matrix. Finally, for the curve segment for fixed y,

C = {ξ(τ, y) | 0 ≤ τ ≤ τ0},
we define the Morse index µ(C) to be the number of focal points on C multiplied by their rank.
Here we assume that the end-point ξ(τ0, y) is not focal.

Now we want to discuss the role of focal points and caustics in geometrical optics in more
detail. For a fixed value of y, the paths ξ(τ, y) are geodesics with respect to the light metric
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dl2 = n2 ds2. Furthermore, we have ξ̇ = π, and according to eq. (9.19) the surfaces of con-
stant phase are perpendicular to the rays. Focal points are convergence points of neighboring
light rays. Focal points of lenses are focal points of order two.

Let C be a geodesic from x0 to x, and such that x is not a focal point for x0. If µ(C) =
0, the path C is the shortest path from x0 to x. This is no longer the case for µ(C) > 0.
For µ(C) = 0, the second variation l′′(C) of the arc length is a positive definite quadratic
functional; in general, µ(C) is just the dimension of the space where l′′(C) is negative definite.
In a way, one may interpret µ(C) as the number of independent short-cuts for the geodesic
C. These relations form the basics of the so-called Morse theory, an interesting mathematical
area combining geometry and variational calculus.

Now, let F̃ be of the form (9.52). The fundamental principles of geometrical optics are
most obvious when the refractive index, n(x), is constant: n(x) ≡ 1. In this case, Hamilton’s
equations read

ξ̇ = π, π̇ = 0, i.e. ξ̈ = 0 (9.55)

(see fig. 9.4). The light rays are straight lines perpendicular to the surface F and can be written
as

ξ(τ, y) = x(y) + N(y)τ, (9.56)

where x(y) ∈F , and N(y) is the unit normal vector of F at point x(y).

Figure 9.4: Focal points for a surface F for n = 1.

The Jacobian matrix Dξ(τ, y) has the form

Dξ(τ, y) =
(

N ,
∂x

∂y1
+ τ

∂N

∂y1
,

∂x

∂y2
+ τ

∂N

∂y2

)
. (9.57)

The zeros of the Jacobian determinant are most easily determined by multiplying Dξ(τ, y) by
the matrix

A =
(

N ,
∂x

∂y1
,

∂x

∂y2

)
. (9.58)

Here ∂x/∂y1 and ∂x/∂y2 are tangent vectors for F and orthogonal to N . So we know that
detA �= 0 whenever y1 and y2 are a parametrization of F . We may even assume A to be
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positive definite. Since N · (∂/∂yi)x = 0 and N · (∂/∂yi)N = 1
2 (∂/∂yi)N2 = 0, the

matrix ADξ has the form 1 0 0

0
0

∂x

∂yi
· ∂x

∂yk
+ τ

∂x

∂yi
· ∂N

∂yk

 . (9.59)

Hence, we have reduced the problem to an investigation of the (2 × 2) matrix:

Dik =
∂x

∂yi
· ∂x

∂yk
− τN · ∂2x

∂yi ∂yk
= gik − τLik, (9.60)

where we have used 0 = (∂/∂yk)[N · (∂/∂yi)x]. In eq. (9.60), gik is positive definite and
determines the metric on F ; it is called the first fundamental form of F ; and Lik is called the
second fundamental form of F .

By a suitable choice of parameters yi, we can arrange that, for any given point, gik(y) =
δik; an additional orthogonal transformation will make Lik diagonal. The two diagonal ele-
ments of Lik are just the two principal curvatures, 1/R1 and 1/R2, of the surface:

Dik =
(

1 − (τ/R1) 0
0 1 − (τ/R2)

)
. (9.61)

Note that the focal points of F are just the centers of curvature of F . Therefore, the Morse
index of a light ray C emanating from a point x(y) ∈F into a direction perpendicular to F
is just equal to the number of centers of curvature of the area segment around x(y) on C:
0 ≤ µ(C) ≤ 2.

Qualitatively, the situation does not change much if n(x) is not constant and the light rays
are no longer straight lines. The “centers of curvature” are merely determined by the geodesics
with respect to a different metric. In general, however, a light ray may pass through several
caustics, i.e. the case µ(C) > 2 is also possible.

9.5 Behavior of phases in the vicinity of caustics

Looking at the local solution,

u(x) =

√J (0, y(x))√J (τ (x), y(x))
ϕ0(ξ(0, y(x))) eikS(x) + O

(
1
k2

)
, (9.62)

it is obvious that the amplitude gets very large close to a caustic, because J (τ (x), y(x))
vanishes there. From the equation derived in section 9.3,

1
J

dJ
dτ

=
∂2H

∂pi ∂xi
(ξ, ∂S(ξ)) +

∂2H

∂pi ∂pj
(ξ, ∂S(ξ))

∂2S(ξ)
∂xi ∂xj

, (9.63)

which simplifies within the framework of geometrical optics to

1
J

dJ
dτ

=
∂2S

∂xi ∂xi
= ∆S, (9.64)
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we see that because of π(τ, y) = (∂S/∂x)(ξ(τ, y)), the term (∂πi/∂xi)(ξ(τ, y)) approaches
infinity at the caustics Σ: At non-focal points x, the direction of the ray π is determined
by x. At focal points x0, rays converge from different directions such that close to x0 the
derivative (∂π/∂x) becomes very large and approaches infinity at the focal point. This leads
to a diverging amplitude.

The expression for u(x), given in eq. (9.62), is no longer valid on a caustic. However, we
can learn from this expression that there will be a rapid change of the phase – in the limit
k → ∞ even a jump – due to the change of sign of J when a caustic is crossed. At a focal
point of order r, the determinant J has an r-fold zero so that one expects for J−1/2 a phase
factor (−i)r = exp(−iπr/2). This phase factor has to be taken into account when the point x
on a ray C lies beyond the first focal point.

Figure 9.5: There may be several light rays from F to x.

Furthermore, in general, there may be more than one ray emanating from the initial mani-
fold F to the point x (fig. 9.5). In this case, the local solution u(x) generalizes to

u(x) =
∑

j

√|J (0, yj(x))|√|J (τj(x), yj(x))| e(−iπ/2)µjϕ0(ξ(0, yj(x))) eikSj(x) +O
(

1
k2

)
. (9.65)

Here the sum runs over all solutions (ξ(τ, yj), π(τ, yj)) of the Hamiltonian system, for which

(ξ(0, yj), π(0, yj)) ∈ F̃

are located on the isotropic initial manifold and for which

ξ(τj, yj) = x.

In eq. (9.65), µj denotes the Morse index of the curve segment

Cj = {ξ(τ, yj) | 0 ≤ τ ≤ τj},
and

Sj(x) =
∫ τj

0

dτ ′ π(τ ′, yj)ξ̇(τ ′, yj)

is just the action along Cj . This expression for u(x) is valid whenever x does not lie exactly
in the caustic for F̃ .

The change of phase when a light ray traverses through a caustic was first observed by
L. G. Gouy in 1890. In Fresnel’s mirror experiment, a point-like source P illuminates two
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Figure 9.6: Sketch of the experiment of Gouy.

mirrors, which are inclined to each other at a very small angle (see fig. 9.6). One observes two
close-by mirror images, P1 and P2, of the point source, together with a system of interference
fringes resembling the pattern of interfering spherical waves emanating from P1 and P2. If one
of the mirrors is replaced by a cylindrical mirror whose axis is parallel to the cut line between
the two mirrors, the interference pattern is shifted in exactly the way one would expect from a
phase shift of a plane wave of π/2, depending on whether one looks at the pattern in front of
or behind the focal line of the mirror. If the second mirror is a spherical mirror, the change in
the interference pattern corresponds to a phase shift of π.

9.6 Caustics, Lagrangian submanifolds and Maslov index

We will see that the geometrical interpretation of the wave equation involving the phase space
P , the isotropic (n − 1)-dimensional initial manifold

F̃ = {x(y), p(y)} = {(ξ(0, y), π(0, y))}⊂P,

the isotropic (n − 1)-dimensional manifolds

F̃τ0 = {(ξ(τ, y), π(τ, y)) | τ = τ0}⊂P,

and the Lagrangian manifold

Λ eF = {(ξ(τ, y), π(τ, y))}⊂P

is particularly suited for the description of the caustics of F̃ .
If J (τ, y) = det Dξ(τ, y) �= 0, i.e. if x = ξ(τ, y) does not lie on the caustic of F̃ , the

transformation (τ, y) �→ ξ(τ, y) is a local diffeomorphism, and instead of (τ, y) we may as
well choose x = ξ(τ, y) to be the local coordinates on the Lagrangian manifold Λ eF . In other
words, if x = ξ(τ, y) does not lie on the caustic, the projection

pr : Λ eF −→ R
n, (ξ(τ, y), π(τ, y)) �−→ ξ(τ, y) (9.66)
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Figure 9.7: Phase space description of caustics.

of Λ eF onto the position space R
n is a local diffeomorphism. Looking at the problem this way,

the caustic Σ⊂ R
n turns out to be the set of critical values of the projection pr.

The set Σ̃⊂Λ eF of points (ξ(τ, y), π(τ, y)) for which J (τ, y) = 0, and for which ξ is not
a local diffeomorphism, is exactly the set of critical points of pr, and the caustic Σ results as a
projection from Σ̃ : pr(Σ̃) = Σ (see fig. 9.7). If

(x0(τ, y), π0(τ, y)) = (x0, p0) = (x1
0, . . . , x

n
0 , p0

1, . . . , p
0
n) ∈ Σ̃ (9.67)

is a critical point of pr, the components of x are no longer permissible as coordinates on
Λ eF . For x0 a focal point of order one, there will exist local coordinates for a neighborhood
of (x0, p0) ∈Λ eF that are of the form (p1, x

2, . . . , xn), and x1 will be a function of these
coordinates, x1 = x1(p1, x

2, . . . , xn), such that (∂x1/∂p1)(p0
1, . . . , x

n
0 ) = 0. Depending on

the sign of (∂x1/∂p1)(p0
1, x

2, . . . , xn
0 ), it is, at least locally, possible to say when a point

(x, p) ∈Λ eF \ Σ̃ is on the “positive” or “negative” side of Λ eF .
For generic Λ eF , the following general result due to Maslov holds:

• The set of critical points Σ̃ ∈Λ eF consists of (n − 1)-dimensional submanifolds and
boundary components of dimension (n − 3), (n − 4), . . . . There is no component of
dimension (n − 2).

• Σ̃ divides Λ eF into a positive and a negative part.

Let γ̃ now be a path in Λ eF with initial point (x1, p1) and final point (x2, p2), which either

does not intersect Σ̃ at all or which intersects it transversely, i.e. with a non-vanishing angle
(see fig. 9.8). For each point (xα, yα) in the intersection of γ̃ with Σ̃, we define nα(γ̃) = ±1,
depending on whether γ̃ traverses the critical subset Σ̃ in (xα, pα) from the negative to the
positive side of Λ eF or vice versa. The Maslov index µ̃(γ̃) of the path γ̃ is now defined by

µ̃(γ̃) =
∑
α

nα(γ̃), (9.68)

where the sum runs over all intersection points of γ̃ with Σ̃.
It seems plausible, and can indeed be proven, that n(γ̃) does not change under continuous

deformations of γ̃ as long as the initial and final points remain fixed. In defining the Maslov
index, one can even get rid of the transversality requirement for the intersections of γ̃ with Σ̃.

In particular, let γ̃ be of the form

γ̃ = {(ξ(τ, y), π(τ, y)) | 0 ≤ τ ≤ τ0, y = y0},
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Figure 9.8: Maslov index of a path eγ. For the depicted case
we have µ(eγ) = 1.

then the projection

γ = pr γ̃ = {ξ(τ, y) | 0 ≤ τ ≤ τ0, y = y0}

is a “light ray” in R
n, and for positive definite (∂2H/∂pi ∂pj) we have

µ̃(γ̃) = µ(γ).

In this case, the Maslov index of γ̃ is equal to the Morse index of γ. However, a general path
in ΛF cannot be projected onto light rays in R

n, which makes the Maslov index an important
generalization of the Morse index.

The expression for the solution u(x), which we presented in section 9.5, becomes ill-
defined for x ∈Σ. The geometrical theory of caustics, which we have just discussed, helps in
the explicit construction of the solutions close to caustics. The strategy is briefly described
below:

1. One chooses a suitable Fourier transform such that one can represent the wave equation
H(x,−(i/k)∇)u(x) partly in position and partly in momentum variables, i.e. using the
variables

(p1, x
2, . . . , xn).

2. In the new variables, one makes a short-wave expansion,

u(p1, x
2, . . . , xn) = ϕ(p1, x

2, . . . , xn) eik bS(p1,x2,...xn),

and calculates Ŝ and ϕ up to order 1/k.

3. By performing the inverse Fourier transformation, one can represent the solution in posi-
tion space.

For Lagrangian manifolds, Arnol’d has determined normal forms for Σ̃ and Σ when they can
be represented, up to equivalence, as polynomials of order ≤ 6. For these cases, the strategy
just outlined yields standard integral expressions for u(x) in the vicinity of a caustic.
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9.7 Supplementary remarks on geometrical short-wave
asymptotics

Up to now we have kept the presentation of the geometrical optics of short-wave asymptotics
and the geometry of caustics as elementary as possible and have deliberately made no use
of elaborate concepts from differential geometry. For the interested reader, in this section
we want at least to sketch the differential geometric formulation and generalization of the
results obtained up to now. Some supplementary remarks concerning the geometric short-
wave asymptotics will follow.

Concerning the mathematical tools, the interested reader is referred to textbooks on differ-
ential geometry. However, we should emphasize that this section as well as sections 10.8 and
10.9 of the following chapter will not be needed for the rest of this book.

In the preceding sections we proceeded from the phase space

P = {(x, p) | x, p ∈ R
n} = R

2n

on which the symplectic form

ω =
n∑

i=1

dxi ∧dpi (9.69)

is defined. The generalizations of these “flat” phase spaces are symplectic manifolds:

Definition 9.1. A symplectic manifold (P, ω) is a (C∞-) manifold P , on which a closed and
nowhere degenerate 2-form ω is defined. That is, dω = 0, and the antisymmetric bilinear form
ω(m) on the tangent space TmP of a point m is non-degenerate for all m ∈P .

Symplectic manifolds always have even dimensions.

Definition 9.2. A smooth bijection Φ : P �→ P is called a symplectic transformation or
canonical transformation if ω is kept invariant (i.e. if Φ∗ω = ω).

Already in chapter 8 we mentioned the following theorem:

Theorem 9.2 (Darboux’s theorem). Every point of a 2n-dimensional symplectic manifold
(P, ω) has a neighborhood U on which one can choose coordinates xi, pi such that the sym-
plectic 2-form ω assumes the form (9.69).

Because of Darboux’s theorem, the results obtained for P = R
2n hold locally for any

symplectic manifold. The notion of a Lagrangian submanifold (see section 9.2) also applies
to arbitrary symplectic manifolds.

If we want to generalize the short-wave asymptotics for linear differential operators from
flat space R

n to an arbitrary manifold Q, or if we want to consider mechanics on an arbitrary
configuration space Q, the corresponding phase space is just the cotangent bundle T ∗Q of the
manifold Q.

The cotangent space T ∗
q Q of Q at a point q ∈Q is the dual space of the tangent space TqQ.

If we denote by xi the local coordinates on Q, the differentials dxi provide a basis for all
cotangent spaces in the validity range of the coordinates.
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So, we obtain coordinates on T ∗Q by complementing the coordinates xi(q) of a point q
by the components pi of the cotangent vectors α =

∑n
i=1 pi dxi(q) in q.

The projection

π : T ∗Q −→ Q (9.70)

is defined in such a way that each cotangent vector at a point q is associated to its base point
q. Using coordinates x and p, we simply have

π(x, p) = x. (9.71)

On T ∗Q is defined a canonical 1-form θ which in coordinates x and p reads

θ =
∑

i

pi dxi. (9.72)

Independent of coordinates, we can define the 1-form θ by the following identity, which should
hold for every (q, α) ∈T ∗Q and every v ∈TT ∗Q:

θ(q,α)(v) = α(π∗v). (9.73)

In a natural way we can make the cotangent bundle T ∗Q into a symplectic manifold by intro-
ducing the closed and nowhere degenerate 2-form

ω = −dθ. (9.74)

The coordinates x and p turn out to be Darboux coordinates on T ∗Q because

ω = −dθ = −d
n∑

i=1

pi dxi =
n∑

i=1

dxi ∧dpi. (9.75)

In general, (P, ω) is called exact symplectic if ω is not only closed but even exact, i.e. if a
1-form θ exists such that ω = −dθ. Hence, in a natural way cotangent bundles are exact
symplectic manifolds. The symplectic manifolds we will encounter in this book will always
be cotangent bundles.

The asymptotic expansion of solutions of linear partial differential equations on mani-
folds Q can always be formulated on P = T ∗Q. The symbol function H(x, p), defined in
section 7.1, now becomes a function on T ∗Q. If S : Q → R is a function on Q, the 1-form

dS : Q −→ T ∗Q (9.76)

is a function with values in T ∗Q. Writing the characteristic equation (9.8) in the form

H ◦ dS = 0 (9.77)

also leads to an interpretation on T ∗Q.
Hamilton’s equations,

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, (9.78)
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are the equations of motion on T ∗Q. As we described in section 7.2, one obtains a La-
grangian submanifold Λ⊂T ∗Q by starting from an isotropic (n−1)-dimensional submanifold
F̃ ⊂H−1(0) and solving Hamilton’s equations (9.78). The only requirement needed is that the
solution curves of eq. (9.78) leave F̃ , i.e. that the vector field

XH =
(

∂H

∂p
, −∂H

∂q

)
(9.79)

is transverse with respect to F̃ . As in section 9.6, Σ̃ is the set of critical points of the projection
π : Λ → Q, and the caustic Σ = π(Σ̃) is the set of critical values of π. Away from the critical
points, Λ has the form

Λ =

{
(x, p)

∣∣∣∣∣ p =
∂S

∂x

}
⊂T ∗Q, (9.80)

where S is a solution of eq. (9.77). S can also be generalized to a function S̃ on Λ where

S ◦ π = S̃. (9.81)

Even the amplitude ϕ0 in the short-wave expansion of the solutions of the partial differential
equation may be reinterpreted as a function ϕ̃0 on the Lagrangian manifold Λ⊂T ∗Q.

Because of eq. (9.39), the transport equation (9.37) appears in this view as the projection
of an equation on Λ. For given initial values for ϕ̃0 on the isotropic (n− 1)-dimensional sub-
manifold F̃ ⊂H−1(0) ∩T ∗Q, one obtains ϕ̃0 on Λ along the solution of Hamilton’s equations
(9.78).

Therefore, the entire short-wave expansion “lives” on Λ rather than on Q. In the sequel of
eq. (9.41), it turned out to be convenient to extract from ϕ0 the square root of the Jacobian
determinant J . Using a coordinate-free geometrical language, this suggests the use of so-
called half-densities on Λ. This means the following: We first define an r-density on an n-
dimensional vector space V as a complex-valued function ρ : ΛnV �→ C on the nth exterior
power of V , having the homogeneity property

ρ(tv) = |t|rρ(v) (9.82)

for v ∈ΛnV . Because ΛnV is one-dimensional, the r-densities form a one-dimensional vector
space Ωr(V ). By definition, half-densities on V have r = 1/2. Let M be an n-dimensional
manifold, then the half-density bundle

Ωn/2(M) =
⋃

m∈M

Ωn/2(TmM) (9.83)

is a complex line bundle on M with obvious topology. Half-densities on M are sections of the
bundle Ωn/2(M); they may be interpreted as square roots of n-forms on M .

These considerations suggest the interpretation of the asymptotic expansion of the solution
as a half-density on Λ. However, this is not sufficient, because the phases that occur in the
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expansion (9.65) and are due to crossings of the critical set Σ̃ or the caustics Σ have not yet
been taken into account.

It turns out that we have to introduce an additional line bundle on Λ, the so-called Maslov
bundle M(Λ). A Maslov bundle is a vector bundle over Λ with a complex one-dimensional
fiber C. However, this time the structure group is Z4 and it contains the information about the
additional phases.

So, the asymptotic solution is a section in the tensor product Ωn/2(Λ) ⊗M(Λ) of the
bundles of half-densities and the Maslov bundle over Λ. The asymptotically leading part of
the so-defined solution is called the symbol of the solution u(x). The relation of this definition
with the notion of a symbol of differential operators will be explained in section 10.9.

We want to sketch briefly the definition of a Maslov bundle M(Λ) and, in this context,
comment on a second way to introduce the Maslov index µ̃(γ̃) of a path γ̃ in Λ. Additional
information may be found in the literature for this chapter, in particular in the book and article
of Guillemin and Sternberg and in the thesis of Meinrenken. First, however, we have to explain
briefly the invariants of Lagrangian subspaces L⊂V of a symplectic vector space (V,J ).

Any two Lagrangian subspaces L, L′ ⊂V can be transformed into each other by a sym-
plectic transformation. A pair of Lagrangian subspaces L1, L2 ⊂V can be transformed into a
second pair L′

1, L
′
2 ⊂V only if dim(L1 ∩L2) = dim(L′

1 ∩ L′
2). For a triple of Lagrangian sub-

spaces L1, L2, L3, there exists exactly one more invariant apart from the four dimensions of
the intersections L1 ∩L2, L1 ∩L3, L2 ∩L3, and L1 ∩ L2 ∩L3. This invariant is the signature
s(L1, L2, L3) of the quadratic form B defined on the exterior direct sum L1 ⊕L2 ⊕L3 by

B(x1, x2, x3) = J (x1, x2) + J (x2, x3) + J (x3, x1). (9.84)

The signature s(L1, L2, L3) is locally constant and depends piecewise continuously on L1,
L2, and L3. Now, let Λ⊂T ∗Q be a Lagrangian submanifold. At each point m ∈Λ we consider
three Lagrangian subspaces of the corresponding tangent space TmT ∗Q of T ∗Q:

1. L1m is the space of vertical tangent vectors at T ∗Q in m⊂T ∗Q. By a simple identifi-
cation we find L1m = T ∗

π(m)Q, where π : T ∗Q → Q is the projection of the bundle
T ∗Q.

2. L2m = TmΛ is the tangent space at Λ in m.

3. L3m is an auxiliary space transverse to L1m and L2m: L3m ∩L1m = L3m ∩L2m = {0}.

Let L3m be the set of suitable auxiliary spaces at point m ∈T ∗Q, i.e. the set of Lagrangian
subspaces of TmT ∗Q that are transverse to L1m and L2m.

For a sufficiently small open neighborhood U ⊂Λ, we can choose the mapping m �→ L3m

to be continuous. Furthermore, there exists a covering A of Λ of such neighborhoods. The
fiber M(m) of the Maslov bundle M(Λ) in m ∈Λ is defined as follows: M(m) is the complex
one-dimensional vector space of all mappings

ψ : L3m −→ C

with the property

ψ(L′
3m) = exp{ 1

4 iπ[s(L1m, L2m, L3m) − s(L1m, L2m, L′
3m)]}ψ(L3m) (9.85)
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for all L′
3m, L3m ∈L3m. Indeed, the properties of s guarantee that this defines a complex line

bundle over Λ with structure group Z4.
In order to define the Maslov index for a path γ̃ in Λ,

γ̃ : [0, 1] −→ Λ,

we proceed from the above-mentioned covering A of Λ. By choosing sufficiently many inter-
mediate points,

0 = t0 < t1 < · · · < tk = 1,

we can always arrange that

γ̃([ti−1, ti]) ⊂Ui

lies within the covering A for a suitable Ui.
The Maslov index µ̃(γ̃) is now given by

µ(γ̃) = −1
2

k∑
i=1

[
s(L1m, L2m, LUi

3m)
∣∣
m=eγ(ti)

− s(L1m, L2m, LUi
3m)

∣∣
m=eγ(ti−1)

]
. (9.86)

One can easily show that this construction is well defined, i.e. that it is independent of the
choice of covering and the choice of intermediate points. In section 10.8, we will describe an
alternative way to define the Maslov bundle M(Λ) and the Maslov index µ̃(γ̃).



10 Diffraction theory

10.1 Survey

Deviations from geometrical optics related to diffraction phenomena are due to the wave-like
nature of light; they are the subject of classical diffraction theory that we want to discuss in
the present chapter.

In section 10.2, we will start with some considerations concerning the principles of Huy-
gens and Huygens–Fresnel. The starting point will be the concept of a wavelet from which
any wave field can be reconstructed as long as at least one single surface of constant phase is
known. Huygens’ principle leads to the reconstruction of all surfaces of constant phase from
a given initial surface. As we shall see, this is a consequence of the eikonal equation for the
phase of a wave field. In addition, the principle of Huygens–Fresnel allows the reconstruction
of the total wave field, not only the surfaces of constant phase or wave front.

In section 10.3, we will gradually develop the method of stationary phases, which is one
of the fundamental tools in the treatment of wave fields with small wavelengths.

Kirchhoff’s identities for the solutions of the scalar wave equation as well as the justifica-
tion of the Huygens–Fresnel principle will be given in section 10.4. In applying the method of
stationary phases to the integral representation of Kirchhoff, we will recover the short-wave
expansion of the wave field derived in the previous chapter.

The theory of diffraction resulting from Kirchhoff’s identities making an approximate
ansatz also due to Kirchhoff will be the subject of section 10.5. The geometrical boundaries of
shadows follow from Kirchhoff’s diffraction integral using the method of stationary phases.
We will also describe the approximations to Kirchhoff’s theory derived by Fresnel and Fraun-
hofer.

Sections 10.6 to 10.8 contain applications of the diffraction theories of Fresnel and Fraun-
hofer. In the two final sections, 10.9 and 10.10, we will give more details about the symplectic
geometrical theory of wave fields. In particular, we will discuss the fundamental notions of
Morse families and Fourier integral operators.

10.2 The principles of Huygens and Fresnel

A quite illustrative and helpful concept for the description of wave fields turns out to be the
notion of wavelets, a form of elementary waves that are solutions corresponding to a point-like
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disturbance of the wave field. For a constant refractive index they are given by

G0(x, x′) =
eik|x−x′|

|x − x′| , (10.1)

while in more general cases the Green’s function

G(x, x′) = A(x, x′) eikS(x,x′) (10.2)

is to be considered as the wavelet.
Huygens’ principle allows a geometrically intuitive construction of the surfaces of constant

phase (see fig. 10.1). Starting from a surface F0 of constant phase, we consider each point of
F0 as the origin of a new wavelet. All other surfaces of constant phase are now obtained as the
enveloping surface of the family of phase surfaces of these wavelets. We shall show that this
form of Huygens’ principle indeed follows from the eikonal equation for S.

Figure 10.1: Construction of wave fronts as the envelope of wavelets ac-
cording to Huygens’ principle.

Consider a family of real-valued functions on R
n,

fα(x) = f(x, α), (10.3)

which depend on r < n parameters α. We define the envelope F (x) as the unique function
which, for all x ∈R

n, coincides in zeroth and first order with one of the functions in our family.
Hence, for all x, the level surfaces of F (x) are tangential to one of the level surfaces from our
family.

The envelope function F (x) has the general form

F (x) = f(x, α(x)), (10.4)

where α(x) tells us which of the functions from our family are tangential to F (x). The condi-
tion of being tangential reads

∂F

∂x
(x) =

∂f

∂x
(x, α)

∣∣∣∣
α=α(x)

.

Because

∂F

∂x
(x) =

∂f

∂x
(x, α)

∣∣∣∣
α=α(x)

+
∂f

∂α
(x, α(x))

∂α(x)
∂x

,

we find

∂f

∂α
(x, α(x))

∂α

∂x
= 0,
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which for the non-degenerate case implies that

∂f

∂α
(x, α(x)) = 0. (10.5)

Therefore, we can determine α(x) by inverting this equation.
For our purpose, the wave front F0 will be given by F0 = {x0(y)} such that S(x0(y)) ≡

S0. The family of wavelets with center on F0 is now

Sy(x) = S0 + S(x, x0(y)), (10.6)

where y assumes the role of the family parameter. The enveloping condition reads

∂S

∂x0
(x, x0(y)) · ∂x0

∂y
= 0, (10.7)

i.e. p0 = −∂S/∂x0 has to be perpendicular to the surface F0. However, this is just the initial
condition for the characteristics that we used in section 9.2 for the solution of the initial value
problem of the eikonal equation:

S(x) = S(x0(y(x))) +
∫ τ(x)

0

dτ ′ π(τ ′, y(x)) · d
dτ ′ ξ(τ ′, y(x))

= S0 + S(x, x0(y(x))). (10.8)

Huygens’ principle can also be justified starting from Fermat’s principle. Later, Fresnel gen-
eralized Huygens’ principle of wavelets by showing that it is possible not only to reconstruct
the surfaces of constant phases but also to find a wave solution by superimposing all wavelets
emanating from some fixed surface of constant phase. Such a construction helped Fresnel to
understand why light in a homogeneous medium propagates along straight lines despite its
wave-like nature. This problem had been the reason why Newton eventually rejected the wave
theory of light in favor of a corpuscular theory (see chapter 1).

Let us consider a spherical wave originating from x0 (see fig. 10.2). The wave surfaces
are spherical shells. The problem consists in explaining why an observer in x sees only light
rays coming along the straight line connecting x and x0 but not light coming from, say, y,
although this point also emits a wavelet.

Figure 10.2: Construction of Fresnel’s zones.

Fresnel solved this problem by imagining spherical shells centered around x with radius
rn = nλ + ρ and looking at the intersection lines with the spherical wave surface, which
in this way are decomposed into so-called Fresnel zones (λ = 2π/k is the wavelength). All
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points in a given zone Zn have the same distance ρ + (n− 1)λ ≤ r ≤ ρ + nλ from x and can
be considered as the origin of wavelets of the form

Cκ(χ)
eik|x−y|

|x − y| (y ∈Zn).

Here, C denotes an as yet unknown normalization constant and κ(χ) an inclination factor
that takes into account that the strength of the spherical wave in y may depend on the angle
χ between the normal direction of the wave surface and the direction x − y. From the inner
to the outer boundary of a Fresnel zone, the phases of the wavelets change by just 2π. For
small wavelengths, the zones are also small, and it becomes plausible that, by interference,
the wavelets from the outer half of each zone just cancel with the wavelets from the inner
half of the following zone. Just the contributions from the inner half of the first zone and the
outer half of the last zone remain. Both are very small for small λ, which explains the almost
straight propagation of light.

However, we do not observe the backward wave emanating from the last zone. Fresnel
took this into account by assuming the inclination factor to vanish, κ(χ) = 0, for χ ≥ π/2.

Hence, the principle of Huygens and Fresnel corresponds to the assumption of an identity
of the form

u(x) = C

∫
F0

df(y) κ(χ)u(x(y))
eik|x−x(y)|

|x − x(y)| , (10.9)

where we have to integrate over some wave front F0.
For a test of this assumption, we calculate the integral for a spherical wave and the surface

|y| = const., |x| > |y|. For κ(χ) ≡ 1, the integral can be calculated explicitly by elementary
methods:

C

∫
|y|=R

df(y)
eik|y|

|y| · eik|x−y|

|x − y|

= 2πC
eik|y|

|y| |y|2
∫ 1

−1

d cosχ
exp[ik(x2 + y2 − 2xy cos χ)1/2]

(x2 + y2 − 2xy cos χ)1/2
(10.10)

=
2πi
k

C
eik|x|

|x| (1 − e2ik|y|).

The best way to reproduce u(x) is by setting

C = − ik
2π

= − i
λ

. (10.11)

This coincides with an observation already made by Fresnel, according to which the phases
of the wavelets must lag behind the phases of the primary wave by π/2. Furthermore, the
intensity is weighted by a factor 1/λ. (From the ansatz, it is obvious that C must have the
dimension of an inverse length.) However, the expression we have just calculated contains an
unwanted “backward” wave coming from the rear side of the sphere, the phase difference with
respect to the forward wave being of the diameter of the phase surface. It must be eliminated by
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a suitably chosen inclination factor. Now the phase surfaces are given by spheres |x| = const.,
like one would expect from Huygens’ principle.

In the coming sections we will attack the problem of the range of validity of the Huygens–
Fresnel principle.

10.3 The method of stationary phases

The principle of Huygens and Fresnel as expressed in eq. (10.9) leads one to consider integrals
of the general form

I(k) =
∫

dny f(y) eikS(y). (10.12)

In particular, we are interested in the behavior of these integrals in the limit k → ∞. Intu-
itively, one would expect that for larger values of k the expression eikS(y), considered as a
function of y, becomes increasingly oscillatory such that the integrand will vanish in the av-
erage for most regions in y space. An exception to this argument will be neighborhoods of
stationary points y0 of the function S(y). In the limit k → ∞ they should yield the dominant
contributions to I(k). Using three lemmas as intermediate steps, we will now confirm this in-
tuitive argument and derive a leading-order expression for I(k). In order to avoid convergence
problems for the integral, we will assume f(y) to have compact support.

We shall prove first the following corollary:

Corollary 10.1. If S(y) has no stationary point in the support of f , i.e. in the closure of the
set of points where f(y) �= 0, then I(k) decreases faster than any power of k:

lim
k→∞

kNI(k) = 0 for all N > 0. (10.13)

Proof: We consider the differential operator

D =
1
ik

1
‖∂S(y)‖2

∂jS
∂

∂yj
. (10.14)

By assumption, S has no stationary point in the integration region and we find everywhere

‖∂S(y)‖2 = ∂iS ∂iS �= 0,

so D is indeed well defined. D is chosen in such a way that D eikS = eikS . The proof now
follows after partial integration:

I(k) =
∫

dny f(y)DN+1 eikS(y)

=
∫

dny (D† (N+1)f)(y) eikS(y) = O
(

1
kN+1

)
, (10.15)
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where the “adjoint” operator D† is defined by

D†f = − 1
ik

∂j

(
∂jS

‖∂S‖2
f

)
. (10.16)

According to Corollary 10.1 it is sufficient to restrict the integration to small regions, each of
which contains only one stationary point of S(y). The error thus made vanishes faster than
any inverse power of k. The integral is additive in the contributions from the stationary points
up to terms vanishing faster than any power of k−N . As a warm-up for the general case, we
first consider one-dimensional integrals of the form∫ ∞

−∞
dt g(t) e−λt2/2.

We have the following corollary:

Corollary 10.2. If g(t), g′(t), and g′′(t) are bounded, the integral

I(λ) =
∫ ∞

−∞
dt g(t) e−λt2/2

exists for λ �= 0, Re λ ≥ 0, and is holomorphic for Re λ > 0.

Proof: The idea of the proof consists of a two-fold partial integration such that the integral∫ t2

t1

dt g(t) e−λt2/2

assumes a form where we can easily estimate its asymptotic behavior for large values of |t1|
and |t2|. Because of

e−λt2/2 = − 1
λt

d
dt

e−λt2/2, (10.17)

we find∫ t2

t1

dt g(t) e−λt2/2 =
∫ t2

t1

dt

(
− 1

λt
g

)
d
dt

e−λt2/2

= − 1
λt

g(t) e−λt2/2

∣∣∣∣t2
t1

+
1
λ

∫ t2

t1

dt
(g

t

)′
e−λt2/2

= − 1
λt

g(t) e−λt2/2

∣∣∣∣t2
t1

− 1
λ2t

(g

t

)′
e−λt2/2

∣∣∣∣t2
t1

+
1
λ2

∫ t2

t1

dt

[
1
t

(
g

t

)′ ]′
e−λt2/2. (10.18)

The uniform convergence of all terms for λ �= 0, Re λ ≥ 0 and the holomorphy for Re λ > 0
are obvious. �
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Furthermore, we write

g(t) = g(0) + [g(t) − g(0)] = g(0) + th(t) (10.19)

and show the following corollary:

Corollary 10.3. For λ �= 0, Re λ ≥ 0 we have∫ ∞

−∞
dt g(t) e−λt2/2 =

√
2π

λ
g(0)

[
1 + O

(
1
λ

)]
, (10.20)

where, by definition, 1/
√

λ = 1/
√|λ| e−iϕ/2 when λ is written in the form λ = |λ| eiϕ.

Proof: The proof is straightforward. First, for real λ > 0:∫ t2

t1

dt exp(−λt2/2) =
√

2π/λ.

According to Corollary 10.2 we may continue to complex values of λ �= 0, Re λ ≥ 0. Fur-
thermore, for Re λ > 0 we have:∫ ∞

−∞
dt th(t) e−λt2/2 = − 1

λ

∫ ∞

−∞
dt h(t)

d
dt

e−λt2/2 =
1
λ

∫ ∞

−∞
dt h′ e−λt2/2,

and the final integral is of the same type. �

We now come back to our integral∫
dny f(y) eikS(y).

We determine the contribution of one integration domain U that contains only one stationary
point y0 of S: (∂S/∂yi)(y0) = 0. In addition, we assume that the stationary point y0 is regular,
i.e. the matrix of second derivatives,

S′′
ik(y0) =

∂2S

∂yi ∂yk
(y0),

should be invertible: detS′′(y0) �= 0. In a sufficiently small neighborhood U ′ ∈U , we can
introduce coordinates zi with yi(0) = yi

0 such that in U ′ the function S(y(z)) assumes the
form

S(y(z)) = S(y0) + 1
2Q(z) = S(y0) + 1

2 (−z2
1 − · · · − z2

l + z2
l+1 + · · · + z2

n).

We now have to determine∫
y(z)∈U ′

dz |J(z)|f(y(z)) exp[12 ikQ(z)],
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where J = det ∂y(z)/∂z is the Jacobian matrix of the transformation. Because Q(z) has only
one stationary point z = 0, the error from extending the integration domain to the whole of
R

n vanishes faster than any inverse power of k. We only have to continue |J |f(y(z)) in some
way to R

n.
Furthermore,

∂

∂zr
S(y(z)) =

∂S

∂yi
(y(z))

∂yi

∂zr
,

and thus

±δrs =
1
2

∂2

∂zr ∂zs
Q(z) =

∂2

∂zr ∂zs
S(y(z))

=
∂2S

∂yi ∂yk
(y(z))

∂yi

∂zr

∂yk

∂zs
+

∂S

∂yi
(y(z))

∂2yi

∂zr ∂zs
.

At the stationary point y0 = y(0) we have ∂S/∂yi = 0 and, therefore,

|detS′′(y0)| |J(0)|2 = 1,

i.e.

|J(0)| = |det S′′(y0)|−1/2. (10.21)

Putting all the results together we finally find the following theorem:

Theorem 10.1. Let f be a function with compact support and let S have only finitely many
regular stationary points yi within the domain of f . Then∫

dny f(y) eikS(y)

=
(

2π

k

)n/2 ∑
yj

exp[i(π/4) signS′′(yj)]√
|detS′′(yj)|

f(yi) eikS(yj) + O(k−n/2−1). (10.22)

Here, sign S′′(yi) equals the number of positive eigenvalues minus the number of negative
eigenvalues of S′′(yi).

As an example for the method of stationary phases, we consider the integral∫
|y|=y

df(y)
eik(|y|+|x−y|)

|y| |x − y| ,

which we already calculated in the last section. The stationary points of S(y) = |y|+ |x − y|
can be read off fig. 10.2: S(y) is

minimal at y01 =
|y|
|x|x, such that |y01| + |x − y01| = |x|,

maximal at y02 = −|y|
|x|x, such that |y02| + |x − y02| = 2|y| + |x|.
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If we define the 3-axis to be along x and introduce y1 and y2 as new coordinates, the
matrices of second derivatives are given by

S′′(y01) =
|x|

|y|(|x| − |y|) 1,

S′′(y02) = − |x|
|y|(|x| + |y|) 1,

(10.23)

such that, finally,∫
|y|=y

df(y)
eik(|y|+|x−y|)

|y| |x − y| =
2πi
k

eik|x|

|x| (1 − e2ik|y|) + O
(

1
k2

)
. (10.24)

In this case the method of stationary phases even yields the exact result (10.10). The two
stationary points correspond to the forward and backward waves.

10.4 Kirchhoff’s representation of the wave amplitude

Let u(x′) be a solution of Helmholtz’s equation:

[∆′ + k2n2(x′)]u(x′) = 0;

and let G(x, x′) be the Green’s function describing an outgoing wave for x ≈ x′:

[∆′ + k2n2(x′)]G(x, x′) = −4πδ(x−x′).

The following identity holds:

∇′{u(x′)∇′G(x, x′) − G(x, x′)∇′u(x′)}
= u(x′)∆′G(x, x′) − G(x, x′)∆′u(x)
= u(x′)[∆′ + k2n2(x)]G(x, x′) − G(x, x′)[∆′ + k2n2(x′)]u(x′)
= −4πu(x′)δ(x−x′). (10.25)

Integration over some compact domain W with boundary ∂W yields

u(x) = 0 for x �∈W,

u(x) =
1
4π

∫
∂W

df ′{u(x′)∇′G(x, x′) − G(x, x′)∇′u(x′)} for x ∈W. (10.26)

Here, the orientation of df ′ is such that it points into W .
This identity for u holds for any Green’s function of the operator ∆ + n2k2. In particu-

lar, if we use the Green’s function GD(x, x′) for Dirichlet boundary conditions, defined by
GD(x, x′) = 0 for x′ ∈ ∂W , the second term in the integral vanishes and we see that u(x) is
already determined by its value on ∂W .

For physical applications there are more interesting domains than compact domains, e.g.
half-spaces or the regions outside closed surfaces (fig. 10.3), which we can think of as limits of
compact domains. We first add a boundary in the form of a half-sphere or sphere of radius R
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Figure 10.3: Two different non-compact domains where
Kirchhoff’s representation of wave fields is applied.

and then take the limit R → ∞. The contribution of this boundary tends to zero for R → ∞,
if u(x) satisfies the so-called radiation condition. This condition means that u(x) describes
only outgoing waves, which is guaranteed if, for large values of |x|, the function u(x) can
be represented as a superposition of outgoing spherical waves whose centers are all located
inside a certain compact domain. For physically relevant situations, the radiation condition is
always satisfied. In this case, the representation of u(x) in terms of the values of u and n ·∇u
on the boundary ∂W , which is due to Kirchhoff, also holds for non-compact W .

Even apart from the fact that ∂W is an arbitrary surface and not necessarily a surface of
constant phase for u(x), Kirchhoff’s representation of u(x) differs, at first sight, essentially
from the ansatz

u(x) =
∫

∂W

df ′ Cκ(χ)u(x′)G(x, x′), (10.27)

which forms the basis of the Huygens–Fresnel principle.
The similarity reveals itself when we insert into Kirchhoff’s integral the ansätze of the

short-wave expansion:

u(x) = a(x) eikφ(x), G(x, x′) = A(x, x′) eikS(x,x′). (10.28)

For both cases, the derivative of the exponential yields a factor k and thus the leading terms.
The other terms may be neglected as long as the amplitude varies more slowly than the

phases, e.g. if |x|, |x′|, and |x − x′| are large compared to the wavelength λ and if caustics
are avoided.

Under these conditions we obtain from eq. (10.26):

u(x) =
ik
4π

∫
∂W

df ′ a(x′)A(x, x′)[∇′S(x, x′) − ∇′φ(x′)] eik[φ(x′)+S(x,x′)]

=
ik
4π

∫
∂W

df ′ [∇′S(x, x′) − ∇′φ(x′)]u(x′)G(x, x′). (10.29)

Because φ(x′) and S(x, x′) are solutions of the eikonal equation, we have

|∇′S(x, x′)| = |∇′φ(x′)| = n(x′). (10.30)

In order to compare with the Huygens–Fresnel principle, we now assume that the phase φ(x′)
of u is constant on ∂W . In this case we have df ′ · ∇′φ = df ′ n and df ′ · ∇′S(x, x′) =
−df ′ n cos χ(x′), where χ(x′) is the angle between the normal of the surface and the ray
direction of G(x, x′) at point x′ ∈ ∂W . [The relations become particularly simple for the free
case, G(x, x′) = eik|x−x′|/|x − x′|, where the rays are straight lines.] We obtain

u(x) = − ik
2π

∫
∂W

df ′ n(x′)
1 + cos χ(x′)

2
u(x′)G(x, x′). (10.31)
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We now see that the Huygens–Fresnel principle holds for small wavelengths where the short-
wave expressions (10.28) hold. Each wavelet contributes with a weight −(ik/2π)n(x′) =
−i/λ, and, in particular, there exists a phase shift of −π/2 with respect to the primary wave.
The inclination factor is κ(χ) = 1

2 (1 + cosχ). It differs from the inclination factor used by
Fresnel but it also leads to a suppression of the backward wave.

Applying the method of stationary phases to Kirchhoff’s integral (10.29) leads to inter-
esting insights. Let y ∈ R

2 be a parameter for the surface. Then the condition for a stationary
point of φ(x′(y)) + S(x, x′(y)) reads

[∇′φ(x′(y)) + ∇′S(x, x′(y))] · ∂x′

∂y
= 0. (10.32)

Therefore, the vector

∇′φ(x′(y)) + ∇′S(x, x′(y)) = pu(x′(y)) − px
G(x, x′(y))

= n(x′)[σu(x′(y)) − σx
G(x′(y))]

has to be perpendicular to ∂W at point (x′(y)). Here, σu is the ray unit vector of the function
u(x′), and σx

G is the ray unit vector for the Green’s function. There are two ways to fulfill this
stationarity condition.

(a) Forward wave: px
u = pG.

(b) Backward wave: pu and px
G are symmetric with respect to the surface normal N

(fig. 10.4), and in this case we find

N · (pu + px
G) = 0,

df ′ N · (pu + px
G) = df ′ · (∇′φ − ∇′S) = 0.

(10.33)

Figure 10.4: Orientation of the wave normal for the backward wave.

Thus, the special form of the integrand in Kirchhoff’s integral (10.29) guarantees that the con-
tributions of the stationary points leading to backward waves vanish within the approximation
of stationary phases. Only contributions of type (a) remain.

The condition of stationarity, pu = pG, implies that for k → ∞ only those light rays
which traverse ∂W continuously and without kinks contribute to the wave u(x) at point x.
If ∂W is a surface of constant phase for u, i.e. if φ(x′) is constant on ∂W , then pG =
−∇′S(x, x′) is perpendicular to ∂W , and the only contributions to the amplitude at x are
from those rays which we employed in chapter 9 in order to find the solution of the initial value
problem of the wave equation. For these rays we have χ = 0 and the inclination factor equals
unity, κ(χ) = 1. They traverse the phase surface ∂W at exactly those points x′(yi) ∈ ∂W
whose distance S(x, x′(yi)) from x, measured in the light metric, is stationary.
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We can indeed convince ourselves that the method of stationary phases applied to Kirch-
hoff’s integral yields the expression for u(x) that we obtained in section 9.5. In particular, the
phase factor exp(−iπµj/2) in eq. (9.65) is identical to the phase (−i) exp[( 1

4 iπ) signS′′(yi)],
where

(S′′(y))ik =
∂2S(x, x′(y))

∂yi ∂yk
.

Here µj is just the number of focal points on the light ray between x′(yi) and x. According
to our discussion in section 9.4, the focal points of order r are the “centers of curvature” of
∂W , and these, in turn, are the points where the eigenvalues of S′′ change sign, which leads
to a jump of 2r in the signature of S′′. We reconfirm this last statement once more for the case
where the light rays are straight lines, i.e. where S(x, x′(y)) = |x − x′(y)|. The relation

∂

∂yi
|x − x′| =

x′(y) − x

|x − x′(y)| ·
∂x′

∂yi
= 0 (10.34)

implies that N = (x − x′)/|x − x′| points into the normal direction and thus

∂2

∂yi ∂yk
|x − x′(y)| = −N · ∂2x′

∂yi ∂yk
+

1
|x − x′(y)|

∂x′

∂yi
· ∂x′

∂yk

=
1

|x − x′| gik − Lik (10.35)

is again proportional to the matrix we already encountered in section 9.4.
The value |µj | > 2 is possible because the action S is primarily defined on the Lagrangian

manifold Λg∂W
and may be multivalued in position space. Therefore, the light ray may pass

through several focal points.
Finally, we want to consider the important and illustrative special case of a system that is

symmetric around its optic axis and where we may confine our discussion to rays close to the
axis and with small inclinations relative to the optic axis (fig. 10.5).

Figure 10.5: Kirchhoff’s integral for a Gaussian optical
system.

Let F′ and F be two non-conjugated planes with an optical separation z measured along
the optic axis. As we did in chapter 8, we use the following ray coordinates: y′ and y are
vectors in F′ and F, respectively, and p′ and p are the two components of the ray momenta
perpendicular to the optic axis.

The image matrix from F′ to F will be given by(
y

p

)
=

(
a b
c d

) (
y′

p′

)
with ab − cd = 1, b �= 0. (10.36)

According to eq. (8.8.2) the point characteristic reads

S(y, y′) =
1
2b

(dy2 − 2y · y′ + ay′ 2) + z, (10.37)
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and the Green’s function

G(y, y′) = a(y, y′) eikS(y,y′)

is given by

G(y, y′) = (−1)n 1
b

exp
(

ik
2b

(dy2 − 2y · y′ + ay′ 2) + ikz

)
. (10.38)

The pre-factor a(y, y′) = (−1)n/b = [det Dξ(τ, p′)]−1/2 follows from the conservation of
the energy flux as well as from the form of the light rays, which close to F can be written as

ξ(τ, p′) = (ay′ + bp′ + (τ − z)p′, τ).

In eq. (10.38), n denotes the number of planes that are conjugated to F′ and are located be-
tween F′ and F; because µ = 2n, we find e−iπµ/2 = (−1)n.

Eventually, Kirchhoff’s integral assumes the form

uF(y) = − i
λb

(−1)n eikz

∫
d2y′ uF′(y′) exp

(
ik
2b

(dy2 − 2y · y′ + ay′ 2)
)

. (10.39)

Note that for coinciding F and F′ (i.e. for z = 0, a = d = 1, and b → 0) one indeed obtains
uF = uF′ .

10.5 Kirchhoff’s theory of diffraction

The typical arrangement of a diffraction experiment is depicted in fig. 10.6. The light from
some source hits a screen S, through which it can pass only at certain apertures. The light
wave is observed on a surface F behind the screen (as seen from the source). There may be
optical components like lenses or mirrors in front of and behind the screen, i.e. the refractive
index need not be constant.

Figure 10.6: Principle arrangement of a diffraction experiment.

Within the framework of Kirchhoff’s diffraction theory, the screen together with its aper-
tures is identified with the boundary ∂W of some domain W . Kirchhoff’s identity,

u(x) =
1
4π

∫
∂W

df ′ [u(x′)∇′G(x, x′) − G(x, x′)∇′u(x′)], (10.40)
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provides a relation between the value of u at some arbitrary point x ∈W and the values of u
as well as the normal derivatives of u on the boundary ∂W . Since the screen might have a
reactive influence on the light wave due to diffraction, the values of u and N · ∇u on ∂W
are not known from the beginning. The light is diffracted at the screen and will be deflected.
Immediately behind the screen these effects may be assumed to be small enough such that the
wave u(x) there is given by geometrical optics. In this sense, Kirchhoff’s diffraction theory
makes the following assumption about the behavior of u and N ·∇u on the dark side of ∂W :

On the screen we have u(x′) = N · ∇u(x′) ≡ 0. Within the apertures of the
screen, u(x′) and N · ∇u(x′) coincide with the light wave that would be there in
the absence of the screen.

According to Kirchhoff’s theory, in W we have

u(x) =
1
4π

∫
A

df ′ [w(x′)∇′G(x, x′) − G(x, x′)∇′w(x′)], (10.41)

where the integral is to be taken over the apertures A of the screen and w(x′) is given by the
undisturbed wave of the light source.

Strictly speaking, this ansatz is not consistent. If one calculates u(x) according to for-
mula (10.41), one finds a non-vanishing amplitude on the screen, which, however, is small.
Furthermore, we are only dealing with a scalar amplitude and, hence, dismiss all diffractive
phenomena related to the polarization of light. There exist extensions of Kirchhoff’s theory
for vector fields (which we will not elaborate further in this context), but the intensities are
reproduced quite well by the scalar theory. For some rare cases the boundary value problem
corresponding to a diffractive arrangement is exactly solvable. It turns out that Kirchhoff’s
theory describes the situation close to the geometrical boundaries of the shadows, where the
most interesting effects are to be expected, quite successfully.

If we replace the screen S by a complementary screen S′, where the apertures and the non-
transparent parts just exchange places, the sum of the corresponding amplitudes u and u′ are
given by an integral over the total boundary ∂W , and from Kirchhoff’s identity we obtain

u(x) + u′(x) = u0(x), (10.42)

where u0(x) is the undisturbed amplitude in the absence of the screen. For each point x where
u0(x) vanishes we find equal intensities:

|u(x)|2 = |u′(x)|2. (10.43)

If, for instance, the light coming from the source is sharply focussed at a point x′
0 on the

observer’s surface F, the intensities for the two arrangements are equal everywhere on F except
at the image point x′

0. This equality of diffraction phenomena for complementary screens is
known as Babinet’s principle.

We now proceed with a more detailed discussion of Kirchhoff’s formula (10.41). Once
again we employ the ansätze

w(x) = a(x) eikφ(x) and G(x, x′) = A(x, x′) eikS(x,x′)
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and disregard the derivatives of a(x′) and A(x, x′), and we obtain:

u(x) =
ik
4π

∫
A

df ′ a(x′)A(x, x′)[∇′S(x, x′)−∇′φ(x′)] eik[φ(x′)+S(x,x′)]. (10.44)

In leading order of k this disregard is well justified, but it also holds if the amplitudes a(x′)
and A(x, x′) within the apertures do not vary much within the distance of a wavelength. This
should be true if there are no focal points of w(x′) or G(x, x′) within the apertures, which
in any case would contradict the idea of a diffraction experiment. Therefore, the expression
above should not be identified with the leading term of a short-wave expansion of u; in par-
ticular, the wavelength does not necessarily have to be small compared to the dimensions of
the aperture. It is just this case for which we expect formula (10.44) to describe the deviations
from geometrical optics.

We obtain the behavior for k → ∞ by applying to eq. (10.44) the method of stationary
phases. If there exists a light ray from the source to the point x on F which intersects the
boundary ∂W at a point x′(x) ∈A of the aperture, then, for k → ∞, u(x) is given by the
undisturbed amplitude in the absence of a screen. For all other cases, u(x) decreases for
k → ∞ faster than any power of k. These domains on F just correspond to the regions of
geometrical light and geometrical shadow. From the discussion in section 10.3 we also know
that the error introduced by changing the functions in front of the exponential function in the
integral outside a certain small neighborhood of the stationary point x′(x) decreases rapidly
for increasing values of k. Therefore, the x′ dependence of those pre-exponential factors is
negligible even if the dimensions of the apertures are not so small that an essential change of
these quantities is impossible anyhow.

The x′ dependence of ∇′S(x, x′) = −p(x, x′) and ∇′φ(x′) = p0(x′) can be estimated
even more precisely. The derivatives of these quantities with respect to x′ are of the order of
the curvature of the wave fronts of w and G(x, x′) at point x′. They are small if there are no
focal points of w or G inside the aperture, and if the source and the observation point x are
sufficiently far away from the screen.

Furthermore, we can neglect the x′ dependence of A(x, x′) and ∇′S(x, x′) in the pre-
exponential terms. The quantities a(x′) and ∇′φ(x′) are allowed to have stronger variations,
because we want to include the description of an important generalization of diffraction where
the apertures may have a varying transparency, like, for example, a slide.

Figure 10.7: Diffraction at an amplitude or phase object.

Furthermore, variations of the optical density along the aperture may introduce additional
changes in phase (see fig. 10.7). However, these changes are with respect to the tangential
direction and they drop out in df ′ ·∇′φ. Depending on whether the variation in amplitude or
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phase is dominant, one speaks of an amplitude object or a phase object. Our expression for
the diffracted wave is now of the form

u(x) = − ik
4π

A(x, x′(x))(cosχ0 + cos χ)
∫

A

df ′ a(x′) eikφ(x′) eikS(x,x′). (10.45)

Here, χ0 and χ are the angles between the wave normals of w and G, respectively, and the nor-
mal of the surface A. For a better understanding of the influence of the aperture, we introduce
quantities that describe the modification of the incoming wave by the aperture. Immediately
in front of the aperture w will be given by

w(x′) = a0(x′) eikφ0(x
′) (10.46)

and immediately behind we write w in the form

w(x′) = a(x′) eikφ(x′) = a0(x′) eikφ0(x
′)t(x′) eiϕ(x′). (10.47)

Here t(x′) is the transmission and ϕ(x′) is the phase modulation.
With these quantities we can write for u:

u(x) = − ik
4π

A(x, x′(x))a0(x, x′(x))(cosχ0 + cos χ)

×
∫

A

df ′ eikϕ(x′)t(x)′ eik[φ0(x
′)+S(x,x′)]. (10.48)

In general, the factors in front of the integral vary only weakly as a function of x, and the
interesting quantity that we now want to study is

U(x) =
∫

A

df ′ t(x′) eiϕ(x′) eik[φ0(x
′)+S(x,x′)]

=
∫

∂W

df ′ P (x′) eik[φ0(x
′)+S(x,x′)]. (10.49)

Here we have introduced the so-called pupil function on ∂W :

P (x′) =

{
t(x′) eiϕ(x′), for x ∈A,

0 for x �∈A.
(10.50)

If A is a simple hole, we have P (x′) = 1 for x′ ∈A and P (x′) = 0 for x′ �∈A.
The optical transmission function K(x, x0) is defined to be the wave u(x) that would

emerge behind the diffracting screen if the source in front of the screen were a point source
located at x0:

K(x, x0) =
1
4π

∫
A

df ′ [G(x′, x0)∇′G(x, x′) − G(x, x′)∇′G(x′, x0)]

= − ik
4π

A(x, x′(x))A(x′(x), x0)(cosχ0 + cos χ)

×
∫

∂W

df ′ P (x′) eik[S(x′,x0)+S(x,x′)]. (10.51)
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Obviously, K is the Green’s function which takes into account the influence of the screen. In
particular, we find for a constant refractive index in front of and behind the screen:

G(x, x′) =
eik|x−x′|

|x − x′|
and

K(x, x0) =
−ik

|x − x′(x)| |x0 − x′(x)|
(

cos χ0 + cos χ

4π

)
×

∫
∂W

df ′ P (x′) eik(|x′−x0|+|x−x′|). (10.52)

The transmission function K(x, x0) characterizes the imaging properties of an optical
instrument by describing the image of a point source. In an optical instrument, the inclination
angles are usually restricted to small values by circular apertures. Effectively, the diffracting
aperture is given by the pupil, which may be a really existing or merely imaginary aperture
providing the lateral limits for the rays.

In order to determine the function

U(x) =
∫

A

df ′ P (x′) eik[φ0(x
′)+S(x,x′)], (10.53)

we choose a reference point x′
0 in the aperture and make a Taylor expansion in ξ:

x′ = x′
0 + ξ.

This Taylor expansion exists if there are no focal points within the aperture. We find

φ0(x′) + S(x, x′) =: Ψ(x′) (10.54)

= Ψ(x′
0) + [p0(x

′
0) − p(x′

0, x)]ξ +
1
2

∂2Ψ(x0)
∂x′ i ∂x′ k ξiξk + · · · .

The quadratic term is negligible if

k
∂2Ψ

∂x′ i ∂x′ k ξiξk 
 2π.

As we have seen, the second derivatives of Ψ are of the order of 1/R0 or 1/R, the curvatures
of the wave fronts. If we characterize the dimension of the aperture by d, the above condition
reads

k

(
1

R0
+

1
R

)
d2 
 2π or λR � d2, λR0 � d2. (10.55)

The case for which a linearization of the phase Ψ is justified is called Fraunhofer diffraction;
otherwise we speak of Fresnel diffraction.

For instance, for a constant refractive index we find

|x′ − x0| + |x − x′| = R + R0 + (N0 − N) · ξ +
1
2

(
1

R0
+

1
R

)
ξ2

− (N · ξ)2

2R
− (N0 · ξ)2

2R0
,
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where

R0 = |x′
0 − x0|, R = |x − x′

0|, N0 =
x′

0 − x0

R0
, N =

x − x′
0

R
. (10.56)

The radii of curvature are just the distances of the source and the observer from the aperture.
The second derivatives of S(x, x′) with respect to x′ vanish if x lies in the focal plane or,

more generally, in the focal surface of the optical instrument behind the screen. Indeed, for
this case we know from our discussion in chapter 8 that

p′(x, x′) = − ∂S

∂x′ = p′(x) (10.57)

is independent of the point x′ ∈A (see fig. 10.8).

Figure 10.8: If F is focal with respect to A, then p′(x, x′)
does not depend on x′.

So the conditions for Fraunhofer diffraction are fulfilled if the observation point x and the
source x0 are both located in a focal plane with respect to A. In this case, the image of x0

lies in the image surface F. These conditions are also fulfilled if F is a focal surface and A is a
surface of constant phase of w(x′).

Fraunhofer diffraction is the simplest and most important form of diffraction phenomenon.
If the aperture A is located in a plane, the function

U(x) =
∫

d2ξ P (ξ) eik[p0−p(x)]·ξ (10.58)

is now simply the Fourier transform of the pupil function. Up to weakly varying factors, the
same also holds for the wave solution u(x) and the optical transmission function K(x, x0).
The Fourier transform of the pupil function manifests itself in the spatial diffraction pattern
in the focal plane F. We shall see soon that this feature gives rise to attractive methods to
manipulate the image of an optical instrument.

10.6 Diffraction at an edge

Before we turn to the phenomenon of Fraunhofer diffraction, we first want to discuss an ex-
ample where Fraunhofer’s approximation is not applicable. Let the screen S have the shape of
a half-plane, i.e. the aperture A is also a half-plane. Assume that the screen is illuminated by a
point source located at x0. For convenience we place x0, S, and F as shown in fig. 10.9: S will
be in the 1–2 plane and the edge is oriented along the 2-axis. For an everywhere constant
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Figure 10.9: Diffraction at an edge.

refractive index, the wave is, up to almost constant factors, given by

U(x) =
∫ ∞

0

dξ1

∫ ∞

−∞
dξ2 (10.59)

× exp
{

ik
[√

x2
0 + ξ2

1 + ξ2
2 +

√
z2 + (x1 − ξ1)2 + (x2 − ξ2)2

]}
.

If x is close to the boundary of the geometrical shadow, the value of ξ for which the
exponent becomes stationary is also small; and for x0, z � |ξ|, we expand the exponent in
terms of ξ, because the main contribution to the integral stems from small values of ξ. Up to
second order this expansion yields√

x2
0 + ξ2

1 + ξ2
2 +

√
z2 + (x1 − ξ1)2 + (x2 − ξ2)2

= x0 + z +
ξ2
1 + ξ2

2

2x0
+

(x1 − ξ1)2 + (x2 − ξ2)2

2z
. (10.60)

Therefore, if we were to omit all terms quadratic in ξ, the integral would be divergent. Includ-
ing the quadratic terms we obtain

U(x1, x2) = eik[x0+z+(x2
1+x2

2)/2z]

∫ ∞

−∞
dξ2 eik[−p2ξ2+(ξ2

2/2R)]

×
∫ ∞

0

dξ1 eik[−p1ξ1+(ξ2
1/2R)],

where p1 = x1/z, p2 = x2/z, and 1/R = 1/x0 + 1/z. From

ik
(

ξ2

2R
− pξ

)
=

ik
2R

(ξ − Rp)2 − ikRp2

2
,

we find

U(x1, x2) = exp
[
ik

(
x0 + z +

(x2
1 + x2

2)
2(x0 + z)

)]
×

∫ ∞

−∞
dξ2 e(ik/2R)(ξ2−Rp2)

2
∫ ∞

0

dξ1 e(ik/2R)(ξ1−Rp1)
2
. (10.61)

The first integral yields the constant
√

2πR/k eiπ/4 and is independent of p2 = x2/z. For the
second integral we obtain∫ ∞

−Rp1

dξ e(ik/2R)ξ2
=

√
R

k

∫ ∞

−√
kR p1

dη eiη2/2.
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The function

F (v) = C(v) + iS(v) =
1√
2π

∫ ∞

v

dη eiη2/2 (10.62)

is called Fresnel’s integral.
For the final result we get

U(x1, x2) = 2π
R

k
eiπ/4 exp

[
ik

(
x0 + z

x2
1 + x2

2

2(x0 + 2z)

)]
F

(
−
√

kR
x1

z

)
. (10.63)

The variation of the intensity, |U |2, is solely due to the factor
∣∣F (−√

kR (x1/z)
)∣∣2. Special

values for Fresnel’s integral F are F (−∞) = eiπ/4 and F (0) = 1
2 eiπ/4. The function

φ(v) = F (0) − F (v) =
∫ v

0

dη eiη2/2

satisfies

φ(−v) = −φ(v), φ(±∞) = ± 1
2 eiπ/4.

Figure 10.10: (Left) Cornu spiral. (Right) Diffraction image of an edge.

Making a plot of the curve (Re φ(v), Im φ(v)) with curve parameter v we obtain a graph
that is called a Cornu spiral (fig. 10.10, left). From this plot we can immediately read off the
behavior of the intensity I(x1) = |U |2 for the diffraction pattern at a half-plane depicted in
fig. 10.10 (right). The distance between the geometrical border of the shadow and the first
maximum of this curve is of the order z/

√
kR.

10.7 Examples of Fraunhofer diffraction

For Fraunhofer diffraction we have seen that the diffracted wave is given, up to insignificant
factors, by the Fourier transform of the pupil function:

U(x) =
∫

d2ξ P (ξ) eik(p′
0−p′)·ξ. (10.64)

Here, p0
′ and p′ are the momentum vectors of the incoming and outgoing waves, re-

spectively. The x dependence enters because of the x dependence of p′(x) (see fig. 10.11).
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Figure 10.11: Fraunhofer diffraction.

If x is located in the focal plane F of the optical system behind the screen, which in linear
approximation may be represented by an optical matrix(

a b
c d

)
,

we can write

x = aξ + bp′.

In addition, because F is supposed to be the focal plane, we have a = 0 and the optical
matrix is of the form(

a b
c d

)
=

(
0 f

−1/f d

)
,

i.e.

x = fp′, p′ =
x

f
.

In the following we will assume that p′
0 = 0 (the case p′

0 �= 0 only leads to a trivial displace-
ment of the diffraction pattern), and we consider diffraction at apertures of various shapes.

10.7.1 Diffraction by a rectangle

In this case the following hold:

−a1

2
≤ ξ1 ≤ a1

2
, −a2

2
≤ ξ2 ≤ a2

2
.

From ∫ a/2

−a/2

dξ e−ikp′ξ =
−1
ikp′

(e−ikp′a/2 − e+ikp′a/2) =
sin(kp′a/2)
(kp′a/2)

a

=
sin(p′aπ/λ)
(p′aπ/λ)

a

we obtain

U =
sin(p′1a1π/λ)
(p′1a1π/λ)

· sin(p′2a2π/λ)
(p′2a2π/λ)

a1a2. (10.65)

The intensity is proportional to |U |2.
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For a → ∞ one obtains diffraction by a slit. The diffraction pattern is homogeneous
along the 2-axis. Along the 1-axis we find a distribution like the one shown in fig. 10.12. The
minima are equally separated by ∆p = λ/a1, and the first minimum is found at pm = λ/a1,
in accordance with the elementary theory of diffraction by a slit.

Figure 10.12: Diffraction pattern for a slit.

10.7.2 Diffraction by a circular aperture

In this case we have:

|ξ| ≤ a.

We make a transformation to polar coordinates,

ξ1 = ρ cos ϕ, p′1 = p cosψ,

ξ2 = ρ sin ϕ, p′2 = p sinψ,

where p′ · ξ = pρ cos(ϕ − ψ), and obtain

U =
∫ a

0

dρ ρ

∫ 2π

0

dϕ eikpρ cos(ϕ−ψ).

The integral does not depend on ψ and can be expressed by a Bessel function:

U = 2π

∫ a

0

dρ ρJ0(kpρ) = πa2 2J1(kpa)
kpa

= πa2 2J1(2πpa/λ)
(2πpa/λ)

. (10.66)

For large values of v, the zeros of J1(v) become equally spaced with separation π. The first
zeros are at

v1 = 1.22 π, v2 = 2.33 π, v3 = 3.24 π. (10.67)

The diffraction pattern consists of a bright circular area surrounded by a concentric system of
alternating dark and bright rings (see 10.13). The first minimum is found at

pm =
rm

f
= 0.61

λ

a
. (10.68)

This diffraction pattern was first derived by G. B. Airy and is of fundamental importance in
the theory of optical instruments. For such a system, the pattern is determined by the diffrac-
tion by circular apertures. Therefore, in the plane where, according to the laws of geometrical
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Figure 10.13: Diffraction pattern for a cir-
cular hole: the Airy function.

optics, a sharp image would appear, the transmission function K is always an Airy function,
2J1(v)/v. Additional geometrical aberration effects should be convoluted with the Airy func-
tion.

For the image of a point-like source, the resolution of optical instruments is limited by the
finite radius of the central maximum of the Airy function. We can estimate the smallest resolv-
able separation of point sources by requiring that the maximum of one image just coincides
with the minimum of the second.

Figure 10.14: (Left) Principle of a telescope. (Right) Resolution of a microscope.

In a telescope (the principle is shown in fig. 10.14, left), it is the front aperture that leads
to diffraction. Therefore, the smallest resolvable angle between two stars at infinity is given
by pm = 0.61 λ/a.

For a microscope, it is the front lens with focal length f that yields the main diffractive
effect (fig. 10.14, right). The distance between primary object and front lens is roughly equal to
f . The wave fronts of two neighboring points with separation r are inclined towards each other
at an angle of the order of p = r/f . Therefore, a rough estimate for the smallest resolvable
distance yields

rm = 0.61λ
f

a
. (10.69)

10.7.3 Arrangements of several identical structures

For several diffracting apertures or, more generally, diffracting structures, which are located
at different positions, the pupil function is given by

P (ξ) =
N∑

j=1

P0(ξ − rj),
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where P0 is the pupil function of a single structure. In this case

U =
∫

d2ξ P (ξ) e−ikp′·ξ =
N∑

j=1

∫
d2ξ P0(ξ − rj) e−ikp′·ξ

=

(
N∑

j=1

e−ikp′·rj

)∫
d2ξ P0(ξ) e−ikp′·ξ

= U0 ·
N∑

j=1

e−ikp′·rj . (10.70)

The diffracted wave is the product of a factor U0 describing the diffraction at a single structure
and a factor A =

∑N
j=1 e−ikp′·rj that depends on the positions of the various structures. We

discuss two particularly important cases for the spatial distribution of diffracting structures,
namely a random distribution of many structures and a regular lattice arrangement (see fig.
10.15), and then consider the case of diffraction at two circular holes.

(a) Random distribution (fig. 10.15a)

The average intensity is given by I = 〈|A|2〉ave |U0|2, where

〈|A|2〉ave =

〈
N∑

i,j=1

e−ik p′·(ri−rj)

〉
ave

. (10.71)

For a random spatial distribution, all the terms in this sum with i �= j will mutually cancel
each other and we obtain 〈|A|2〉ave = N ; thus

I = N |U0|2 = NI0. (10.72)

The result is the diffraction pattern of a single structure, but with N -fold intensity. We can
observe this effect when we look at a light source through a misted window, where the small
water droplets act as diffracting structures. Another example is the halo around the Moon on
not completely clear nights. The diffracting structures do not need to be located in a plane,
because our theory also holds for light diffraction at centers that are randomly distributed in
space.

Figure 10.15: Diffraction by (a) randomly distributed structures and (b) by a regular lattice.
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(b) Regular lattice (fig. 10.15b)

In this case, rn1,n2 = n1a1 + n2a2 (0 ≤ ni ≤ Ni − 1), where a1 and a2 are fixed lattice
vectors. The sum of the geometric series yields

A =
N1−1∑
n1=0

e−ikp′·a1n1

N2−1∑
n2=0

e−ikp′·a2n2

=
e−ikp′·a1N1 − 1
e−ikp′·a1 − 1

e−ikp′·a2N2 − 1
e−ikp′·a2 − 1

(10.73)

and

|A|2 =
sin2(N1πp′ · a1/λ)
sin2(πp′ · a1/λ)

sin2(N2πp′ · a2/λ)
sin2(πp′ · a2/λ)

. (10.74)

For a linear arrangement, N2 = 1 and the second factor drops out. For a spatial distribution, a
so-called spatial lattice, we obtain a third factor of the same type.

The minima of |A|2 are located at integral values of mi = (Nip
′ ·ai)/λ, where 0 < mi <

Ni. The values mi = 0 and mi = Ni correspond to maxima. For increasing values of Ni,
these so-called principal maxima become increasingly steeper and smaller (the width is of the
order 1/Ni), and for large Ni they are considerably higher than the so-called secondary or
side maxima between the principal minima. In this case, the total intensity

I = |U0|2 |A|2 (10.75)

is sharply concentrated at the principal maxima of |A|2. This property is used for the con-
struction of diffraction gratings (N2 = 1 and N1 = N large), where the resolution λ/∆λ for
different wavelengths is given by λ/∆λ = N .

For a spatial lattice, the principal maxima are determined by Bragg’s condition: p′ ·ai/λ =
Mi, where i = 1, 2, 3.

(c) Two circular holes

Finally, we discuss diffraction at two circular holes of radius a separated by a distance r > a.
In this case N1 = 2 and N2 = 1, and U is given by

|U |2 = |U0|2
(

sin(2πp′r/λ)
sin(πp′r/λ)

)2

= 4 |U0|2 cos2
(

πp′r
λ

)
, (10.76)

where |U0|2 is Airy’s diffraction pattern. The resulting diffraction pattern is shown in
fig. 10.16: the circles of Airy’s pattern are traversed by parallel stripes of maxima and minima.

10.8 Optical image processing in Fourier space

We now consider an optical system that maps the object plane S, where the pupil function P (ξ)
is defined, onto the image plane B (fig. 10.17). This mapping associates to P (ξ) an amplitude
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Figure 10.16: Diffraction pattern of two circular holes.

and phase distribution P ′(ξ) = eiαvP (vξ) in the image plane B, which differs from P (ξ)
only by a (positive or negative) scale factor v and a net phase α. This follows from the fact
that the mapping from S to B is stigmatic, and the optical distance between conjugated points
is always equal. The pre-factor v is a consequence of the conservation of the total intensity.
Located between S and B is the focal plane F, where (up to a scale transformation) we find the
Fourier transform P̃ of P as the amplitude and phase distribution of the wave function. Placing
a screen at F will allow us to see directly |P̃ |2 as the intensity distribution. Hence, the part of
the optical system that is located between F and B effectively induces a back-transformation
from the Fourier transform P̃ to the original pupil function (up to scale factors).

Figure 10.17: Imaging the object plane S onto the
image plane B. When S is described by the pupil
function P , we find in the focal plane F, up to a scale
factor, the Fourier transform eP .

Strictly speaking, because the plane F can never have an infinite extension, the components
of P̃ (p) are cut off for large values of p. This is just another way to understand the restrictions
on the resolution of a system due to diffraction effects.

Denoting by P̃ (p) the Fourier transformation of P (ξ), we find the following well-known
relations between a function and its Fourier transform:

(i) P (ξ + a) and eip·aP̃ (p),

(ii) eib·ξP (ξ) and P̃ (p − b),

(iii) P (αξ) and (1/α2)P̃ ((1/α)p),

(iv) P ∗(ξ) and P̃ ∗(−p).

(10.77)

These relations may be interpreted as follows:

(i) A translation of P corresponds to a simple phase shift of the image at F, while the inten-
sity distribution |P̃ |2 remains unchanged.

(ii) A linear phase shift in ξ of the pupil function P corresponds to a translation of the image
at F.

(iii) A dilation of P corresponds to a contraction of P̃ : the smaller the structure at S, the more
extended it appears at F.
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(iv) If P is real at S (or has a fixed phase), like e.g. for an amplitude object that is illuminated
from a direction perpendicular to S, we have |P̃ (p)|2 = |P̃ (−p)|2, i.e. the diffraction
pattern is mirror symmetric around the origin.

The image at B can be influenced by placing suitable filters in plane F, which either induce
specific phase shifts or suppress certain Fourier components with a template.

For a better understanding, we consider P̃ (p) for various pupil functions. If S consists of
a simple large hole without any primary object, we have P ≡ 1 and P̃ (p) = const.× δ(p). In
the plane F, we only observe a central maximum at the origin. Figure 10.18 shows the Fourier
transforms for simple line and net structures as well as for a lattice structure with additional
imperfections.

Figure 10.18: The Fourier transforms for various pupil functions. One can eliminate the inter-
fering structures in (d) by placing a special mask at F that allows only the Fourier transform of
the lattice to pass through it.

If we mask the Fourier components corresponding to P̃ at plane F, we can eliminate the
image of P at plane B. In principle, any unwanted structure can be suppressed by a suitable
mask. We obtain such a mask by placing the structure as a pupil function at plane S and
making a photograph of its image on plane F. In this way, we can suppress the irritating raster
in a newspaper picture. We can eliminate the disturbing spots in fig. 10.18(d) with the help of
a mask that has small holes where the maxima of the Fourier transform of the lattice net are
located. Placing a circular aperture at F around the center and making the radius of the hole
smaller, the lattice pattern in the image of the pupil function becomes gradually diffused and
eventually vanishes.
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We can learn from (iii) that, in general, a filter whose transparency decreases with in-
creasing distance from the center will suppress the higher Fourier components and thus the
smaller structures. The result is a less pronounced contrast. On the other hand, a filter at F
with increasing transparency away from the center enlarges the contrast of the image at B.

An interesting effect is achieved by a mask that suppresses the central maximum at p = 0.
In the absence of a mask, uniformly dark regions at B result from interference of the homo-
geneous background field stemming from the central maximum with the other structures. If
the central maximum is masked, these previously dark regions become light. Sharp transitions
between dark and light areas at S will be visible as linear structures at B.

Many microorganisms are phase objects when we consider them as optical structures.
They are uniformly transparent but according to their structure their inner refractive index
exhibits modulations. Such phase objects are described by pupil functions of the form

P (ξ) = A eikϕ(ξ), A = const. (10.78)

The Fourier transform |P̃ |2 usually corresponds at F to a structured intensity distribution,
which, after Fourier back-transformation, returns to a uniform intensity distribution at B. In
order to make phase objects observable at B, one first has to transform them into amplitude
objects. For biological objects, this is often achieved by coloring, which, however, usually
kills the organism. A better solution consists in processing the image at F.

Since the phase differences are small, we may assume that kϕ(ξ) 
 1. The general case
can be treated in a similar way with only a manageable increase in effort. Up to first order in
kϕ we obtain

P (ξ) = A[1 + ikϕ(ξ)], i.e. |P |2 = |A|2[1 + O(k2ϕ2)],

and the intensity variations are of the order of k2ϕ2. The Fourier transform of P is given by

P̃ (p) = A[4π2δ(p) + ikϕ̃(p)]. (10.79)

There are various methods to manipulate P̃ , three of which are as follows.

(a) The dark-ground method

An opaque disk placed in the center of F removes the central maximum. The resulting distri-
bution on F is given by

P̃ ′(p) = iAkϕ̃(p),

from which we obtain after a back-transformation to the plane B:

P ′(ξ) = iAkϕ(ξ).

If no phase object is present, we have ϕ(ξ) ≡ 0, and B appears dark. In front of this dark
background the phase object is visible as the intensity distribution

|P ′(ξ)|2 = |A|k2ϕ(ξ)2.
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(b) The phase contrast method

This was developed by F. Zernicke (Nobel prize, 1953). A transparent filter in the center shifts
the phase of the central maximum by +π/2 or −π/2. Now,

P̃ ′(p) = A[±4π2iδ(p) + ikϕ̃(p)],

and the back-transformation leads to

P ′(ξ) = iA[±1 + kϕ(ξ)].

The intensity,

|P ′|2 = |A|2{1 ± 2kϕ(ξ) + [kϕ(ξ)]2},
exhibits a modulation of ϕ(ξ) in first order. The phase object becomes visible as an amplitude
object at B.

(c) The Schlieren method

In practice, a higher intensity for dark-ground or phase contrast microscopes is achieved not
by using plane waves for the primary illumination but by using the congruent light from ring-
shaped sources. In this case, the zeroth-order maximum at F is also ring-shaped and can be
manipulated by a ring-shaped mask.

A variant of this method, already discovered in 1864 by August Toepler, is the so-called
Schlieren method (the word “Schlieren” refers to the German word for streaks or striae), which
is of special importance in fluid dynamics. With this method one can make visible the streaks
– small variants of the refractive index – in a fluid.

In this arrangement a small fluid-filled cell is placed at S. A knife-edge is introduced in
the focal plane and covers about one-half of the image at F. When the edge approaches the
focal point, the streaks become perceptible in the form of cloudy structures on the screen B,
and their spatial and temporal fluctuations are easily observed.

10.9 Morse families

We have already mentioned at the end of section 9.6 that in the vicinity of caustics it can be
helpful to generalize the simple ansatz

u(x) = eikS(x)ϕk(x)

of the short-wave asymptotics into an integral ansatz of the form

u(x) =
(

k

2π

)r/2 ∫
Rr

dra eikS(x;a)ϕk(x, a). (10.80)

In the preceding sections, integrals of this type have occurred on several occasions. The
integration runs over r parameters (a1, . . . , ar), and in order to avoid convergence problems
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we assume that the integrand has compact support as a function of a. The method of stationary
phases reveals that for k → ∞ only the points in

MS =
{

(x, a)
∣∣∣∣ ∂S

∂a
(x; a) = 0

}
⊂Q × R

r (10.81)

contribute. Furthermore, we shall always assume that the r × (r+n) matrix of second deriva-
tives has rank r,

rank
(

∂2S

∂ai ∂aj

∣∣∣∣ ∂2S

∂ai ∂xk

)
= r (i, j = 1, . . . , r; k = 1, . . . , n). (10.82)

If this regularity condition is fulfilled, MS is an n-dimensional submanifold of Q × R
r, and

the set

ΛS =
{

(x, p) ∈P

∣∣∣∣ ∂S

∂a
(x; a) = 0, p =

∂S

∂x
(x; a)

}
⊂P (10.83)

is a Lagrangian submanifold of the phase space P = (T ∗Q).
The 2-form ω =

∑
dxi ∧ dpi = −d(

∑
pi dxi) vanishes on ΛS , which is an immediate

consequence of the fact that on ΛS we have

∑
pi dxi =

∑ ∂S

∂xi
dxi = dS.

Furthermore, the regularity condition (10.82) guarantees that ΛS has maximal dimension n.
If a Lagrangian manifold ΛS and a family of functions S(x; a) are related in the way

described by eq. (10.83), S(x; a) is called a Morse family for ΛS . For a given Lagrangian
submanifold Λ, there exist many Morse families S that locally parametrize Λ, i.e. for which
locally Λ = ΛS . It turns out that in the vicinity of a caustic of order r one needs at least r
auxiliary parameters ai and that there always exists a local parametrization with r parameters.
In many cases one chooses certain momentum coordinates p as auxiliary parameters.

A Morse family S(x; a) is a generalization of the generating function S(x) of a Lagrangian
manifold ΛS . Indeed, away from the caustics, Lagrangian manifolds are always of the form

ΛS =
{

(x, p)
∣∣∣∣ p =

∂S(x)
∂x

}
. (10.84)

In chapter 8 we have seen that the graph of a canonical transformation Φ : P → P is a
Lagrangian submanifold of P × P if we equip P × P with the symplectic form

Ω =
∑

dxi ∧dpi −
∑

dxi
0 ∧dp0 i. (10.85)

Also, S(x, x0; a) is a Morse family for a canonical transformation Φ if S is a Morse family
for graph Φ. This is a generalization of the generating function of a canonical transformation.
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The following composition rules hold:

• If S1(x0; a) is a Morse family for Λ⊂P and S2(x, x0; b) is a Morse family for a canoni-
cal transformation Φ : P → P , then

S(x; x0, a, b) = S2(x, x0; b) + S1(x0; a) (10.86)

is a Morse family (with auxiliary parameters x0, a, and b) for the Lagrangian manifold
Φ(Λ) ⊂P , which is the image of Λ under the mapping Φ.

• If S2(x, x1; a) is a Morse family for Φ2 : P → P and S1(x, x1; b) is a Morse family for
Φ1 : P → P , then

S(x, x0; x1, a, b) = S2(x, x1; a) + S1(x1, x0; b) (10.87)

is a Morse family (with parameters x1, a, and b) for the combined canonical transforma-
tion Φ2 ◦ Φ1 : P → P .

The proofs of these statements follow from the conditions of stationarity:

0 =
∂S(x; x0, a, b)

∂x0

=
∂S2(x, x0; a)

∂x0
+

∂S1(x0; a)
∂x0

= −p
(2)
0 + p

(1)
0 ;

0 =
∂S(x, x0; x1, a, b)

∂x1

=
∂S2(x, x1; a)

∂x1
+

∂S1(x1, x0; b)
∂x1

= −p
(2)
1 + p

(1)
1 .

(10.88)

Finally, the Maslov bundle M(Λ) and the Maslov index of a path γ̃ in Λ can be defined
using Morse families. We have seen that both are related to the phases associated with a
crossing of caustics.

The contribution of a stationary point a0 to the integral in eq. (10.80) is of the form

ua0(x) =
exp[(iπ/4) signS′′

aa(x; a0)]√| detS′′
aa(x; a0)|

eikS(x;a0)ϕ(x, a0). (10.89)

The phases of the asymptotic expansion are given by the signature of the matrix

(Saa(x, a0))ij =
∂2S

∂ai ∂aj
(x, a0). (10.90)

Now, let n ∈Λ and denote by S(n) the set of all Morse families parametrizing Λ in some
neighborhood of n. The fiber of the Maslov bundle M(Λ) at point m ∈Λ is defined to be the
set of all mappings

ψ : S(n) −→ C
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with the property that, for all S1(x; a), S2(x; a′) ∈S(n), we have

ψ(S1) = exp
{

iπ
4

[
sign

(
∂2S1

∂a2

)
− sign

(
∂2S2

∂a′ 2

)]}
ψ(S2). (10.91)

We can now define the Maslov index µ̃(γ̃) for some path γ̃ in Λ as follows. Let γ̃ : [0, 1] →
Λ be a path in the Lagrangian submanifold Λ. We choose points 0 = t0 < t1 < · · · < tk = 1
such that, for some suitable Morse families Si, we have γ̃([ti−1ti]) ⊂ΛSi

. We now define

µ̃(γ̃) = −1
2

k∑
i=1

[
sign

(
∂2Si

∂a2
i

(γ̃(ti))
)
− sign

(
∂2Si

∂a2
i

(γ̃(ti−1))
)]

. (10.92)

The proof of the equivalence of this definition with the definition given in chapter 9 is quite
elaborate.

10.10 Oscillatory functions and Fourier integral operators

In this section we will introduce the concept of oscillatory functions and Fourier integral
operators. This will be done in a slightly simplified form and without claiming mathematical
rigor. These notions fit exactly the needs of theoretical optics.

Let Q be a manifold. If a function f : Q → C can be written as a locally finite sum of
integrals of the form

I(x, k) =
(

k

2π

)r/2 ∫
dra eikS(x;a)ϕk(x, a), (10.93)

it is called an oscillatory function on Q.
As in the previous section, we assume that ϕk(x, a) has compact support with respect

to a and that S(x; a) is a Morse family that locally parametrizes a Lagrangian submanifold
Λ⊂T ∗Q. In this case one speaks of f as an oscillatory function associated to Λ.

Local finiteness means that for each point x ∈Q only finitely many terms of the form
(10.93) contribute to the sum. In section 9.7 we have seen that it may be useful to generalize
this definition slightly in such a way that f assumes values in the product Ωn/2(Λ) ⊗M(Λ)
of half-density bundles and Maslov bundles. Expanding with respect to stationary phases, one
notes that in the limit k → ∞ the integral (10.93) really “lives” on the manifold

MS =
{

(x, a)
∣∣∣∣ ∂S(x; a)

∂a
= 0

}
⊂Q × R

r,

or, similarly, on the Lagrangian submanifold ΛS that one obtains from MS by the following
injection (“Lagrange immersion”):

iS : MS −→ ΛS ⊂T ∗Q

(x, a) �−→
(

x,
∂S(x; a)

∂x

)
∈ T ∗Q.

(10.94)
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More precisely, in the limit k → ∞ it is only the intersection of MS with the support of
ϕk(x, a) and its image under iS that matters:

iS(MS ∩ supp ϕk) = F (I). (10.95)

This Lagrangian submanifold F (I) ⊂ΛS is called the frequency set of the oscillatory integral
I . If f is a locally finite sum of integrals Ii of the form (10.93), the frequency set on which f
“lives” is given by

F (f) ⊂=
⋃
i

F (Ii). (10.96)

If, for some function

g = e−ikψ(x)χ(x), (10.97)

the intersection of the set

Mg =
{

(x, p)
∣∣∣∣x ∈ supp χ, p =

∂ψ

∂x

}
⊂T ∗Q (10.98)

with the set F (I) is empty, Theorem 10.1 on stationary phases tells us that the function

A(k) = 〈I, g〉 =
(

k

2π

)n/2 ∫
dnx I(x, k)g(x) (10.99)

=
(

k

2π

)(n+r)/2 ∫
dnx dra eikS(x;a)−ikψ(x)ψk(x, a)χ(x)

will vanish in the limit k → ∞ faster than any power of k−N . In this sense I is concentrated
on F (I). For an arbitrary oscillatory function f , the frequency set F (f) is defined in such a
way that for Mg ∩F (f) = ∅ we have

lim
k→∞

k−N 〈f, g〉 = 0 for all N ≥ 0. (10.100)

The requirement that the integrand in eq. (10.93) has compact support with respect to a is
still too limiting. We can get rid of it by considering locally finite sums of integrals (10.93) also
with respect to a. This idea is behind the following definition of an oscillatory distribution.

Definition 10.1. Let A = {Uα} be a locally finite covering of T ∗Q with open and relatively
compact sets Uα. Furthermore, let Λ⊂T ∗Q be a Lagrangian submanifold. The locally finite
sum

f =
∑
α

fα (10.101)

is called an oscillatory distribution associated to Λ if fα are oscillatory functions associated
to Λ with compact support and F (fα) ⊂Uα.
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Also for oscillatory distributions the concept of a frequency set remains meaningful. The
asymptotically leading part σ(f) of f , which we obtain by the method of stationary phases, is
called the symbol of f or sometimes the principal symbol.

Let OF0(Q) be the space of oscillatory functions with compact support in Q. A linear
operator

K : OF0(Q) −→ OF0(Q),

(Ku)(x) =
∫

dnx′ K(x, x′)u(x′)
(10.102)

is called a Fourier integral operator if the integral kernel K(x, x′) is an oscillatory distribution
on Q×Q. The integral kernel K is associated to a canonical transformation Φ : T ∗Q → T ∗Q
if K(x, x′) is associated to the Lagrangian submanifold graph Φ⊂T ∗Q × T ∗Q. In general,
the integral kernel K(x, x′) of a Fourier integral operator is the sum of integrals of the form

I(x, x′) =
(

k

2π

)r ∫
dnp dra eikp(x−x′)ϕk(x, x′; a).

We now discuss some particularly important examples of Fourier integral operators for the
case Q = R

n.

(a) Unit operator
Its kernel is

Kδ(x, x′) =
(

k

2π

)n ∫
dnp eikp·(x−x′) = δ(x − x′). (10.103)

The Morse family S(x, x′; p) = p · (x − x′) parametrizes the Lagrangian manifold

F (Kδ) = Λδ = {((x, p), (x,−p))}⊂T ∗Q × T ∗Q. (10.104)

As a graph Λ corresponds to the identity transformation. The asymptotic expansion is
trivial. At the stationary point we have (∂S/∂p) = 0, i.e. S(x, x′; p) = 0, and we find

σ(Kδ) =
(

k

2π

)n

. (10.105)

(b) Invertible point transformation x′ → h(x′)
Now, the kernel is given by

Kh(x, x′) =
(

k

2π

)n/2 ∫
dnp eikp·[x−h(x′)] = δ(x − h(x′)). (10.106)

For the frequency set we find

F (Kh) = Λh = {(h(x′), p), (x′,−(∂h/∂x′)p)}, (10.107)
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which corresponds to the graph of the following canonical transformation:

Φ : (x, p) �−→
(

h(x),
(

∂h

∂x

)−1

p

)
. (10.108)

Again

σ(Kh) =
(

k

2π

)n

. (10.109)

(c) Differential operator H(x, −(i/k)∂)
This is like that used in section 9.1. We have

(Hu)(x) = H

(
x,− i

k
∂

) (
k

2π

)n/2 ∫
dnp eikp·xũ(p)

=
(

k

2π

)n/2 ∫
dnp eikp·xH(x, p)ũ(p)

=
(

k

2π

)n ∫
dnx′

∫
dnp eikp·(x−x′)H(x, p)u(x′),

from which we obtain for the kernel of the operator:

KH(x, x′) =
(

k

2π

)n ∫
dnp eikp·(x−x′)H(x, p). (10.110)

In this sense, differential operators are also Fourier integral operators. The Morse family
S(x, x′; p) = p · (x − x′) is the same as for the unit operator δ(x − x′).

Hence, all differential operators are associated to the canonical unit transformation; further-
more, S(x, x′; p) vanishes on ΛS . These two properties even characterize the set of pseudo-
differential operators among all Fourier integral operators.

Obviously, the symbol of H is

σH =
(

k

2π

)n

H(x, p), (10.111)

and it agrees, up to a trivial factor, with the symbol of H that we defined in section 9.1. This
justifies the name “symbol” for the asymptotically leading term.

The following elementary operations involving oscillatory functions and Fourier integral
operators seem close at hand:

1. Application of a Fourier integral operator K to an oscillatory function u with compact
support.

2. Composition of two Fourier integral operators K1 and K2, for which the composition
K1 ◦ K2 is also a Fourier integral operator.
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A third operation might be less obvious:

3. Transition to the adjoint K† of a Fourier integral operator.

It is possible to formulate a so-called symbol calculus which, for given symbols or, more
generally, for asymptotic expansions of K1, K2, and u, allows one to determine the symbols
of the asymptotic expansions of K1u, K1 ◦K2, K+

1 , and K+
2 . The calculations we performed

in chapter 9 in the context of asymptotic expansions are examples of such operations. The
symbol calculus is closely related to the notion of star products, which will be explained in
chapter 13.

Recalling what we have said in the previous section 10.9 about Morse families makes the
following statements obvious. Let the Fourier integral operators K1 and K2 be associated to
the canonical transformations Φ1 and Φ2, respectively, and let u be an oscillatory function
with compact support associated to Λ⊂T ∗Q. Then

• K1u is associated to the Lagrangian submanifold Φ1(Λ), the image of Λ under Φ1;

• K1 ◦ K2 is associated to the canonical transformation Φ1 ◦ Φ2.

Furthermore, the frequency sets satisfy the following locality property:

F (K1u) ⊂Φ1(F (u)).

A brief look at the content of the previous and the following chapters reveals that the subject
of theoretical optics as a theory of wave fields is packed with oscillatory functions and Fourier
integral operators.



11 Holography

11.1 The principle of holography

In the previous chapter, notably in section 10.3, we have seen that for fixed frequency ω = kc
a solution u(x) of the wave equation

(∆ + k2n2)u(x) = 0 (11.1)

is already determined by its values on a surface S, at least under the condition that the solution
satisfies the radiation condition at infinity.

Now let u(x) be the (monochromatic) wave radiating from some object G. If one could
generate a wave on S that coincides completely, in amplitude and phase, with u(x) on S,
an observer B behind S would not be able to distinguish this wave from the original wave
u(x). In particular, the observer can see the image of G from different perspectives. If the
amplitude and phase of u(x) are only produced on a segment A of S, the wave of G can only
be reconstructed for a certain range of volume angles for the observer B (fig. 11.1).

Figure 11.1: Superposition of an object wave and a reference
wave during the taking of a hologram.

In principle, the reconstruction of a wave for such a range of volume angles could be
realized by illuminating a special type of slide, placed in the aperture A of the screen, with
a planar wave. The transparency of this slide should reproduce the amplitude of the wave,
and the optical thickness of the slide should reproduce the phase of the wave on S. However,
technically such a slide is almost impossible to realize, because it is difficult to measure the
phase of u at a point.

Using a special trick, however, holography comes quite close to this ideal. The idea is
to superimpose the primary wave u(x) emanating from the object with a reference wave
u0(x) = a0 eik0·x (with k2

0 = k2). Denoting by ξ some coordinates on S, the intensity of
the superposition u0(x) + u(x) on S is given by

I(ξ) = |u0 + u|2
= |a0|2 + a∗

0u(ξ) exp(−ik0 · ξ) + a0u
∗(ξ) exp(+ik0 · ξ) + |u(ξ)|2. (11.2)

We assume that the intensity of the reference wave on S is much higher than the intensity of
u(ξ), so that the term |u(ξ)|2 in I(ξ) can be neglected.
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If we place a photographic film at S (or A), the blackening of the film will be proportional
to the intensity I and the developed film will exhibit a complicated pattern of bright and dark
structures, whose transparency is given by

t(ξ) = 1 − γI(ξ), (11.3)

and which for the naked eye has no obvious similarity with the object G.
This slide is now placed at A and illuminated from behind by a reconstruction wave

u1(x) = a1 eik1·x. Immediately behind the film, which is often called a hologram, the wave
will be

w(ξ) = t(ξ)u1(ξ)
= a1(1 − γ|a0|2) exp(ik1 · ξ) − γa1a

∗
0u(ξ) exp[i(k1 − k0) · ξ]

− γa1a0u
∗(ξ) exp[i(k1 + k0) · ξ]. (11.4)

We first set k1 = k0. Within a certain region for the volume angle set by the aperture A, an
observer B will observe a diffracted wave that is the superposition of three amplitudes:

1. a wave eik0·x;

2. a wave that coincides up to a constant factor with the wave u(x) coming from the object
G; and

3. a wave that differs by a factor −γa1a0 e2ik0·ξ from the complex-conjugate wave u∗ on A.

Next we assume that at A the direction of the reference wave is inclined with respect to
the preferred direction kG/k of the wave vector for the object wave u. In this case, the three
waves are concentrated around different wave vectors in Fourier space, which are

1. k = k0,

2. k = kG, and

3. k = k(kG + 2k0)/|kG + 2k0|.
For an observer B the waves arrive from different directions. Within a certain volume an-
gle around kG/k the observer only perceives one wave that is (almost) not superimposed
by the other waves and is indistinguishable from the object wave u(x). Thereby one can re-
construct, at least in certain regions of the volume angle, the total wave field u and thus a
three-dimensional picture of G.

In other directions one can observe the reference wave or the complex-conjugate wave.
This conjugate wave gives the observer a picture of G that is inverted in a bizarre form. First,
because of the factor e2ik·ξ, this picture seems to come from a different direction. Second,
because of complex conjugation, there is an inversion of phase shifts. This has the effect
that the front and back parts of G seem to be perspectively inverted, while at the same time
the image of the intersections of the different parts of G seem to have the correct spatial
relations. Because of these irritating effects, the image of the complex-conjugate wave is rather
annoying; however, since t(ξ) is real it cannot be avoided.
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There are other situations for which the construction of phase conjugated mirrors produc-
ing the complex-conjugate wave u∗(x) for a wave u(x) are of great interest (see chapter 6).

It is also interesting to observe that in a certain way any part of the hologram contains the
full information about the object G. Indeed, using only a part of the hologram corresponds to
a smaller window A and thus to a smaller region of volume angles where G is visible. One
can think of a hologram as a planar diffraction grating whose diffractive image reproduces a
given object G.

There are no principle changes for the case in which the reconstruction wave and the
reference wave are different. For k1 = αk0, the image of G appears in a different color and
seems to be reduced by a factor α. If the directions of k0 and k1 are different, the image of G
also appears in a different direction.

From the arguments given above it should be obvious that the reference wave and the
reconstruction wave do not have to be planar. Also suitable are waves u0 and u1 that on A
have the forms u0(ξ) = a0(ξ) exp[ikψ(ξ)] and u1(ξ) = exp(iq · ξ)u0(ξ), respectively, with
only weak variations of a0(ξ).

11.2 Modifications and applications

Ever since its discovery by Dennis Gabor (Nobel prize, 1971) in the late 1940s, the importance
of holography has increased substantially due to steady technological progress. The biggest
technical problem consists in keeping the phase differences of the wave field stable among
the different points of the aperture A during the exposure of the hologram, because otherwise
there will be no sharp interference image. The necessary “coherence” of the wave field can
only be achieved by laser light, and the brief exposure times can be realized with pulsed high-
power lasers and highly sensitive photographic emulsions. The progress of this development
is revealed by the fact that holographic portraits already exist.

The basic arrangement described in the last section can be modified in many ways:

1. Apart from the amplitude holograms described above, phase holograms are also in use.
In this case it is not the transparency that is influenced by the exposure of a film but the
refractive index, such that the hologram produces a spatially modulated phase shift of
the reconstruction wave. For a phase hologram, the transmission t(ξ) in eq. (11.3) has to
be replaced by t(ξ) = exp[iγI(ξ)] ≈ 1 + iγI(ξ), with γI(ξ) � 1. Up to an irrelevant
factor of −i, one obtains the same conditions as for an amplitude hologram.

2. The reference wave can also consist of spherical waves whose radius of curvature at A
is adjusted to the radius of curvature of the wavefronts of the object wave. This reduces
fluctuations in the distances between the maxima and minima of the intensity distribution
I(ξ) for different parts of the hologram and thereby diminishes the demands for the
resolution of the emulsions.

3. Colored spatial pictures are produced by the superposition of holograms for different
colors.

4. Using the same method, any surface, not only a screen S, in the line of the radiation of
some optical instrument can be used for the reconstruction of the wave field in amplitude
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and phase. Of special importance is the reconstruction in the focal plane F behind the
screen (see fig. 10.17). In this case it is not the pupil function P that is reconstructed
on S but its Fourier transform P̃ . In this way the given resolution of the photographic
emulsion can often be used more efficiently. Such holograms are called Fourier transform
holograms.

5. Instead of transparent holograms, reflecting holograms are also possible.

6. Holograms can also be generated by ultrasound waves. In the arrangement shown in
fig. 11.2, a sound wave is reflected at some submerged object G and interferes with a
reference wave of a second correlated sound source. This produces a hologram of ripples
at the surface, which can be observed by the reflection of laser light and provides an
“X-ray” image of G.

Figure 11.2: Principle of acoustic holography.

We now want to describe briefly a few special applications of holography.

11.2.1 Observing small object deformations

The idea is to compare the holograms of a deformed and an undeformed object, which can be
done in several ways:

• Make a double exposure of a film with the holograms of the undeformed and the de-
formed object.

• Produce a hologram of the undeformed object first and place it at the aperture A; the
object remains in its position and the reference wave also remains unchanged. Now the
hologram of the undeformed object is illuminated by the wave field of the deformed
object.

In both cases the deformations will show up in the interference patterns of the image seen by
the observer B.

• If the object oscillates elastically with small amplitudes during the exposure time, the
holographic images reveals nodes and anti-nodes of the vibration.

11.2.2 Holographic optical instruments

When we illuminate a film from one side with a spherical wave and from the other side with a
plane reference wave and record the resulting interference pattern, we obtain a hologram that
focuses the reconstruction wave into one point, i.e. which acts like a converging lens.

In this way or, more recently, using computer-generated holograms, one can manufacture
optical elements that are light and flat and are able to generate any given wave field.
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11.2.3 Pattern recognition

If a substructure g(ξ) is part of some pattern f(ξ) at some position ξ0 (see fig. 11.3), the
convolution

(f ∗ Ig)(ξ) =
1
2π

∫
d2η f(η)g(η − ξ) =: h(ξ) (11.5)

exhibits a steep maximum at ξ = ξ0, where Ig(ξ) := g(−ξ). Due to the convolution theorem,
a Fourier transforms leads to

f̃(k)Ĩg(k) = h̃(k).

Figure 11.3: Searching for a substructure g in some
pattern f .

When we place a Fourier hologram of Ig in the focal plane F and use this as a filter for
the interference pattern of f , the function h̃(k) shows up as the irradiation distribution (see
fig. 10.17). After a Fourier back-transformation one observes bright spots in the focal plane B
at all places where the structure g occurs in f .

11.3 Volume holograms

There is no need to restrict the recording of the intensity I(x) = |u(x) + u0(x)|2 of the
interference field of the reference wave u0 and the object wave u to the plane of a single
film; one can also produce images within a certain volume. Suitable media are thick and light-
sensitive emulsion layers or crystals of potassium bromide (KBr), where the exposed parts
produce colored centers with variable transparency. Also in use are ferroelectric crystals like
lithium niobate and potassium tantalate niobate. They react to exposure with a change of the
refractive index and one obtains a spatial phase object.

Such a volume hologram can be visualized as a stack of planar holograms. In contrast to the
case of planar holograms, it is now important that the reference wave and the reconstruction
wave are equal up to a constant factor, otherwise the holographic images of the different planar
holograms in the stack would be “off beat” and would in the average almost everywhere cancel
each other by interference.

Alternatively, a volume hologram can be described as a spatial lattice that is constructed
in such a way that the Bragg diffraction field represents a given object.

Like for planar holograms, the calculations for volume holograms are also easily per-
formed. A monochromatic reconstruction wave u1(x) = a1 eik1·x with frequency ω1 = c |k1|
illuminates a volume with a certain distribution t(x) of scattering centers. A scattered wave
Gω1(x − x′) emanates from a center at point x′ with the same frequency ω1, which is pro-
portional to both t(x′) and the value u1(x′) of the reconstruction wave at point x′. The total
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scattered wave is proportional to

w(x) = (2π)−3/2

∫
d3x′ t(x′) eik1·x′

Gω1(x − x′). (11.6)

(In addition there exists the unscattered primary wave a′
1 eik1·x.)

The Fourier transform of the scattered wave follows from the convolution theorem:

w̃(k) = t̃(k − k1)G̃ω1(k). (11.7)

Since w(x) is (almost) monochromatic, we have

w̃(k) = 0 for |k| �= ω1

c
. (11.8)

In a volume hologram the distribution t(x) results from illuminating the light-sensitive
volume with the interference pattern of the reference wave u0(x) = a eik0·x and the object
wave u(x), both monochromatic with frequency ω0 = c |k0|:

t(x) = 1 − γI(x),
I(x) = |u0(x) + u(x)|2 (11.9)

= |a0|2 + a∗
0u(x) e−ik0·x + a0u

∗(x) eik0·x + |u(x)|2.
As we did before, we neglect the term |u(x)|2 and find

t̃(k) = const. × δ(k) − γa∗
0ũ(k + k0) − γa0ũ

∗(k0 − k).

According to eq. (11.7), the Fourier transform of the scattered wave w(x) generated from this
function has the form

w̃(k) = [const. × δ(k − k1)− γa∗
0ũ(k + k0 − k1) − γa0ũ

∗(k0 + k1 − k)]G̃ω1(k).

The first term is a contribution to the unscattered direct part of the reconstruction wave, and
as such of no further interest. If k1 �= ±k0, the other two contributions vanish for almost
all values of k and only produce reflections in certain directions, which have little to do with
the original wave u(x). They are easily identified and separated. Indeed, G̃ω1(k) is sharply
concentrated around |k| = ω1/c such that for k �= ω1/c we have in good approximation
G̃ω1(k) = 0. Furthermore, we also have that ũ(k + k0 − k1) = 0 for |k + k0 − k1| �= ω0/c
and ũ∗(k0 + k1 − k) = 0 for |k0 + k1 − k| �= ω0/c.

Figure 11.4: The support of ew(k) as the intersection of two
spheres.

The relationships become clear when we take a look at fig. 11.4. For k0 �= ±k1, the
scattered light is concentrated on the surfaces of cones that result from the intersection of two
non-concentric spheres. On the other hand, if k0 = k1, and thus also ω0 = ω1, we have

w̃(k) = [const. × δ(k − k1) − γa∗
0ũ(k) − γa0ũ

∗(2k0 − k)]G̃ω1(k).
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Because G̃ω1(k) is rotationally invariant, it only contributes a constant factor. Apart from
the direct unscattered wave, there are two scattered waves, the first of which differs from the
object wave only by a constant, and the second of which is concentrated on the surface of a
cone. For k1 = −k0 it is the phase conjugated wave ũ∗(−k) that dominates.

The fact that reference and reconstruction waves must have the same wave vector k0 = k1

is more of an advantage than a disadvantage. In this way, several volume holograms can be
recorded with different values of k0 on one and the same light-sensitive volume. In the re-
construction, only that hologram becomes visible for which the reference vector k0 coincides
with the one offered by the reconstruction vector.

This leads to attractive possibilities for optical data storage with extremely high storage
density and convenient decoding methods. By recording a volume hologram simultaneously
with three reference waves whose wave vectors coincide with respect to their direction but
not with respect to their value, one obtains a colored three-dimensional picture. For the recon-
struction one can illuminate this hologram even with white light, as the correct wave vectors
are filtered out automatically. Simple volume holograms can be found almost for free.
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12.1 Coherent and incoherent light

In all our previous discussions on optics, we have not been concerned with the origin of the
light wave fields whose behavior in different optical systems we wanted to study. The wave
fields we considered were always monochromatic; sometimes they consisted of plane waves
and sometimes the wave fields emanated from a point-like center of disturbance. In any case
they possessed the property of complete temporal and spatial coherence: the phase of a field
at point x0 at time t0 determined the phase for all other times t at the same point; likewise,
the phase at t0 at point x0 determined the phases at all other points x for t0.

However, not even a single free atom radiates ideal monochromatic light. On the contrary,
the excited states responsible for the emission of light have a lifetime τc of about 10−8 s, which
corresponds to a wave train of length lc = cτc = 3 m. Associated with the finite lifetime τc is
a frequency uncertainty ∆ω ≈ 1/τc of the emitted radiation. For an atom interacting with its
environment, the so-called coherence time τc and the coherence length lc = cτc may even be
much shorter.

In addition, a common light source consists of a very large number of atoms and
molecules, which radiate almost independently. Under these circumstances, for a fixed time t0
and close to the light source, there should be no perceptible correlations of phases for the wave
field at different locations; and for a given point x0 the information about the phase should be
lost after the coherence time τc.

On the other hand, interference phenomena like diffraction with a visible pattern of max-
ima and minima are only possible if the phase differences exhibit a certain temporal and spatial
stability. These interference phenomena were observed long before the development of lasers,
where atoms and molecules produce correlated radiation. These effects are due to the fact
that, far away from a radiating source, a (slight) spatial coherence emerges all by itself. In or-
der to understand this phenomenon, let us consider a source with spatial extension d′, whose
molecules radiate uncorrelatedly in a small frequency band of width ∆ω around ω.

An observer separated from the source by a distance R � d′ performs measurements
within a volume of linear dimension d � R (see fig. 12.1). Let ξ′

1 and ξ′
2 be two points within

the source and let R+ξ1 and R+ξ2 be two points close to the observer. For each of these two
points, the observer measures the path length difference for the radiation emanated at points
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Figure 12.1: Coherence of light
from distant sources.

ξ′
1 and ξ′

2:

∆R1′ = R11′ − R21′ =
√

(R + ξ1 − ξ′
1)2 −

√
(R + ξ2 − ξ′

1)2 ,

∆R2′ = R12′ − R22′ =
√

(R + ξ1 − ξ′
2)2 −

√
(R + ξ2 − ξ′

2)2 .

(12.1)

The observer will find spatial coherence if the path length differences for the radiation from
different points of the source are small compared with the wavelength of the radiation:

∆R1′ − ∆R2′ < λ, where λ =
2π

k
=

2πc

ω
. (12.2)

In lowest non-vanishing order a Taylor expansion in ξ1, ξ2, ξ′
1, and ξ′

2 yields

∆R1′ − ∆R2′ = − (ξ2 − ξ1)⊥ · (ξ′
2 − ξ′

1)⊥

R
= O

(
dd′

R

)
, (12.3)

where ξ⊥ denotes the component of ξ perpendicular to R. So the coherence condition reads

dd′ < λR (12.4)

or, equivalently,

d <
λ

α′ , d′ <
λ

α
. (12.5)

Here,

α =
d

R
and α′ =

d′

R

are the angles at which the source is seen by the observer and at which the observer is seen by
the source, respectively.

The typical angle at which we see a star is about 0.005′′ (arc-seconds), which for λ =
5 × 10−7 m corresponds to an extension of d ≈ 20 m. Table 12.1 lists the coherence radius
d for three typical distant light sources. Light sources are often radiating surfaces. In this
case the coherence volume has the dimensions lc = cτc in the ray direction and d = λ/α′

perpendicular to the ray direction.
In the coming sections, we will develop a detailed quantitative formulation of the concept

of coherence, which, in particular, incorporates the random character of a wave field of a
natural light source.
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Table 12.1: Coherence lengths for distant sources.

Largest fixed star
(Betelgeuse) α′ = 0.047′′ d ≈ 2 m

Source with α′ = 1′′ d ≈ 10 cm

Light source of 5 mm as seen
from a distance of 100 m α′ ≈ 10′′ d ≈ 1 cm

12.2 Real and analytical signals

This section will provide some tools for the later treatment of non-monochromatic wave fields.
Up to now, we have mainly considered monochromatic waves of the form

vω(t, x) = e−iωtuk(x) with k =
ω

c
, (12.6)

where uk(x) is a solution of Helmholtz’s equation,

[∆ + k2n2(x)]uk(x) = 0. (12.7)

Linear superposition gives us the most general solution of the wave equation,(
1
c2

n2(x)
∂2

∂t2
− ∆

)
v(t, x) = 0, (12.8)

in terms of a temporal Fourier representation

v(t, x) =
1√
2π

∫
dω e−iωtuk(x). (12.9)

In a similar way, from the Green’s function

Gk(x, x′) = A(x, x′) eikS(x,x′) (12.10)

for Helmholtz’s equation, we obtain the Green’s function

G(t, x, x′) =
1
2π

∫
dω e−iωt Gk(x, x′)

=
A(x, x′)

2π

∫
dω e−iω[t−(1/c)S(x,x′)] (12.11)

= A(x, x′) δ

(
t − 1

c
S(x, x′)

)
,

which satisfies the equation(
1
c2

n2(x)
∂2

∂t2
− ∆

)
G(t, x, x′) = 4πδ(t)δ(3)(x − x′). (12.12)



214 12 Coherence theory

Here G(t, x, x′) is just the retarded Green’s function of the wave equation: the time at position
x is retarded with respect to a source at x′ by a running time (1/c)S(x, x′). In particular, we
obtain for the vacuum, n(x) ≡ 1:

G0(t, x, x′) =
1

|x − x′| δ

(
t − 1

c
|x − x′|

)
. (12.13)

Of course, for physical solutions of the wave equation, v(t, x) is real, which we will in-
dicate in the following by an index “r”. We slightly change the notation such that the Fourier
representation reads

vr(t, x) =
1√
2π

∫
dω e−iωtṽ r(ω, x). (12.14)

Since vr is real, the Fourier transform satisfies

ṽ r(ω, x) = ṽ r(−ω, x)∗. (12.15)

Hence, the total information about vr is already contained in the values of the Fourier trans-
form ṽ r for positive frequencies. It is convenient to introduce complex fields whose Fourier
components vanish for negative frequencies. We define

v(t, x) =
1√
2π

∫ ∞

0

dω e−iωtṽ r(ω, x) =
1√
2π

∫ ∞

−∞
dω e−iωtṽ(ω, x), (12.16)

where

ṽ(ω, x) =
{

ṽ r(ω, x) for ω ≥ 0,
0 for ω < 0.

(12.17)

Obviously

vr(t, x) = v(t, x) + v(t, x)∗, (12.18)

and we immediately recover vr from v. The complex function v(t, x) is called the analytical
signal, which is justified by the fact that, due to the absence of negative frequency components,
v(t, x) as a function of t can be analytically continued to a holomorphic function on the lower t
half-plane. According to our discussion in section 2.4, applied to analytical signals, we observe
that the real signals

vr(t, x) = v(t, x) + v∗(t, x),
vi(t, x) = −i[v(t, x) − v∗(t, x)]

(12.19)

are related by dispersion relations, i.e. they are Hilbert transforms of each other, and v can be
written in terms of vr or vi.

From now on we shall always assume that complex signals v(t, x) do not contain any
negative frequencies. If the integral∫

dt |v(t, x)|2
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exists, unitarity of the Fourier transformation implies that∫
dt |v(t, x)|2 =

∫
dω |ṽ(ω, x)|2 (12.20)

or, more generally,∫
dt v(t+τ, x1)v∗(t, x2) =

∫
dω e−iωτ ṽ(ω, x1)ṽ∗(ω, x2). (12.21)

However, we are mainly interested in signals like v(t, x) = e−iωtuk(x), for which the
integrals do not exist. Therefore, we are only allowed to perform calculations with temporally
averaged intensities of the form

I(x) = lim
T→∞

1
2T

∫ T

−T

dt |v(t, x)|2. (12.22)

For a more rigorous treatment we will use signals with a “cut-off”,

vr
T (t, x) =

{
vr(t, x) for |t| ≤ T,

0 for |t| > T,
(12.23)

which are confined to the interval [−T, T ]. Indeed, a stationary signal is an idealization, be-
cause no signal acts for an infinite time. For each finite value of T , we have

1
2T

∫ ∞

−∞
dt vr

T (t+τ, x1)vr
T (t, x2) =

1
2T

∫ ∞

−∞
dω e−iωτ ṽ r

T (ω, x1)ṽ r∗
T (ω, x2), (12.24)

and we can expect that the limit T → ∞ exists. We introduce double angle brackets to denote
the temporal average of a quantity:

〈〈A(t)〉〉 = lim
T→∞

1
2T

∫ T

−T

dt A(t). (12.25)

With this notation the equation above can be written in the form:

〈〈vr(t+τ, x1)vr(t, x2)〉〉 =
∫

dω e−iωτ lim
t→∞

1
2T

ṽ r
T (ω, x1) ṽ r∗

T (ω, x2). (12.26)

Using the simplified notation v1(t) = v(t, x1), which we shall adopt frequently in this
chapter, we obtain for the analytic signal v(t, x):

〈〈v1(t + τ ) v∗2(t)〉〉

= lim
T→∞

1
2T

∫ T

−T

dt

∫
dω√
2π

∫
dω′
√

2π
e−iω(t+τ) e+iω′tṽ1T (ω)ṽ∗2T (ω′)

= lim
T→∞

∫
dω√
2π

∫
dω′
√

2π

∫ T

−T

dt e−i(ω−ω′)t e−iωτ 1
2T

ṽ1T (ω)ṽ∗2T (ω′).
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From the identity

lim
T→∞

∫ T

−T

dt e−i(ω−ω′)t = 2πδ(ω − ω′),

we find

〈〈v(
1t + τ ) v∗2(t)〉〉 =

∫
dω e−iωτ Γ̃12(ω), (12.27)

where

Γ̃12(ω) = lim
T→∞

1
2T

ṽ1T (ω)ṽ∗2T (ω). (12.28)

Here Γ̃12(ω) satisfies the conditions Γ̃12(ω) = Γ̃∗
21(ω) and Γ̃12(ω) = 0 for ω < 0. This rather

formal calculation can be justified rigorously. For a light wave field that does not contain
any additional static field, we have 〈〈v1(t)〉〉 = 0. We shall always assume that the temporal
average of v vanishes. From

1
2T

∫ T

−T

dt v1(t) =
1

2T
ṽ1T (0), (12.29)

we can deduce that ṽ(ω) can only be weakly singular for ω → 0, which then implies

〈〈v1(t + τ ) v2(t)〉〉
= lim

T→∞

∫
dt

∫
dω√
2π

∫
dω′
√

2π
e−i(ω+ω′)t e−iωτ 1

2T
ṽ1T (ω)ṽ2T (ω′)

=
∫

dω

∫
dω′ δ(ω + ω′) e−iωτ lim

T→∞
1

2T
ṽ1T (ω)ṽ2T (ω′)

=
∫

dω e−iωτ lim
T→∞

1
2T

ṽ1T (ω)ṽ2T (−ω)

= 0,

because ṽ1T and ṽ2T do not contain any negative frequencies. From vr = v + v∗ we get

〈〈vr
1(t + τ ) vr

2(t)〉〉 = 〈〈v1(t + τ ) v∗2(t)〉〉 + 〈〈v∗1(t + τ ) v2(t)〉〉. (12.30)

In particular, for x1 = x2 and τ = 0 the mean intensity at x1 is given by

I(x1) = 〈〈[vr
1(t)]

2〉〉 = 2 〈〈v1(t)v∗1(t)〉〉 = 2
∫

dω Γ̃11(ω). (12.31)

So Γ̃11(ω) has the meaning of a spectral density for the intensity. For τ �= 0 we obtain
1
2 〈〈vr

1(t + τ ) vr
1(t)〉〉 = Re 〈〈v1(t + τ ) v∗1(t)〉〉

= Re
∫

dω e−iωτ Γ̃11(ω). (12.32)
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12.3 The light wave field as a stochastic process

A natural light source consists of many atoms and molecules whose microstates cannot be con-
trolled by observation. Therefore, light signals v(t, x) at given space-time points will be more
or less random. In other words, for each space-time point (t, x) there exists a random vari-
able V (t, x) whose distribution depends on the characteristic properties of the light source.
Hence, in our description of the light field we are dealing with a collection of uncountably
many random variables or, more precisely, a random function V (t, x). Expressed in a math-
ematical language, the wave field should be described by a stochastic process. Each actually
existing wave field v(t, x) is a realization of the stochastic process, and the probability distri-
bution characterizing the stochastic process determines the relative probabilities of different
realizations.

As for all random variables A, we can consider the expectation value 〈A〉. Of special
interest are the expectation values

Γ(t1, x1, . . . , tr, xr; tr+1, xr+1, . . . , tn, xn)
= 〈V (t1, x1) · · ·V (tr, xr)V ∗(tr+1, xr+1)V ∗(tn, xn)〉, (12.33)

which are called generalized correlation functions. We will often use the simplified notation

Γ1,...,n(t1, . . . , tn) = 〈V1(t1) · · ·Vr(tr)V ∗
r+1(tr+1)V ∗

n (tn)〉. (12.34)

The following is a list of a few particularly important special cases:

(i) Γ12(t+τ, t) = 〈V1(t + τ ) V ∗
2 (t) the covariance function,

(ii) Γ11(t, t) = 〈V1(t) V ∗
1 (t)〉 ≥ 0 the intensity function,

(iii) γ12(t+τ, t) =
Γ12(t+τ, t)

[Γ11(t+τ )]1/2[Γ22(t)]1/2
the correlation function.

Independently of further specifications, every random variable C satisfies the inequality

〈C∗C〉 ≥ 0,

and writing C =
√〈B∗B〉A + eiϕ

√〈A∗A〉B we find

〈C∗C〉 = 2〈A∗A〉〈B∗B〉 +
√
〈A∗A〉

√
〈B∗B〉 〈eiϕA∗B + e−iϕB∗A〉 ≥ 0.

From this we obtain the fundamental inequality

|〈AB∗〉| ≤
√
〈A∗A〉

√
〈B∗B〉. (12.35)

The equality sign holds for the case C0 = A/
√〈A∗A〉 + eiϕ0B/

√〈B∗B〉 = 0. Setting
A = V1(t + τ ) and B = V2(t) this inequality implies

|Γ12(t+τ, t)|2 ≤ Γ11(t+τ, t+τ )Γ22(t, t)

or

0 ≤ |γ12(t+τ, t)| ≤ 1. (12.36)
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We now summarize some additional properties of stochastic processes that describe the
light wave fields in which we are interested.

(A) Because each realization v(t, x) satisfies a linear wave equation and because expectation
values are linear, the generalized correlation functions satisfy the same wave equation
with respect to all of their arguments, e.g.(

n2(x)
c2

∂2

∂t2
− ∆

)
〈V (t, x) V ∗(t′, x′)〉 = 0. (12.37)

(B) Each realization contains only non-negative frequencies; in particular, we have that
〈Ṽ (ω, x)〉 = 0 for ω < 0. As we have seen in the last section, we may require this
property without loss of generality.

(C) 〈V (t, x)〉 = 0. This only implies that we deal exclusively with oscillating fields without
any static contributions. From (B) and (C) we also find

〈V (t1, x1) V (t2, x2)〉 = 〈V ∗(t1, x1) V ∗(t2, x2)〉 = 0. (12.38)

(D) The stochastic process is stationary:

〈V1(t + τ1) · · ·Vr(t + τr) V ∗
r+1(t + τr+1) · · ·V ∗

n (t + τn)〉
= 〈V1(τ1) · · ·Vr(τr) V ∗

r+1(τr+1) · · ·V ∗
n (τn)〉. (12.39)

So, the generalized correlation functions depend only on time differences. In particular,
we will use the following notation:

Γ12(t+τ, t) = Γ12(τ, 0) =: Γ12(τ ),

Γ11(t, t) = Γ11(0),
(12.40)

and

|Γ12(τ )| ≤ √
Γ11(0)

√
Γ22(0),

0 ≤ γ12(τ ) ≤ 1.
(12.41)

For a real signal we find

Γr
12(τ ) = 〈V r

1 (t + τ ) V r
2 (t)〉 = 2 ReΓ12(τ ),

Γr
11(0) = 〈V r

1 (t)2〉 = 2Γ11(0),
(12.42)

and

0 ≤ γr
12 = Re γ12 =

Γr
12(τ )√

Γr
11

√
Γr

22

≤ 1. (12.43)
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(E) The stochastic process is ergodic, which means that for (almost) all realizations we may
replace the expectation value 〈 · 〉 by the temporal average 〈〈 · 〉〉:

〈〈v1(t + τ1) · · · v∗n(t + τn)〉〉 = 〈V1(τ1) · · ·V ∗
n (τn)〉. (12.44)

In other words, we may think of an ergodic process as a motion for which the state of a
system approaches, for sufficiently large time-scales, any given state arbitrarily closely
and arbitrarily often. Ergodic systems contain incommensurable frequencies.

Because of 〈〈A(t)〉〉 = 〈〈A(t+t0)〉〉, an ergodic process is always stationary, which makes
(D) a consequence of (E).

One more important consequence of ergodicity will be emphasized in particular. A simi-
lar calculation as in the previous section, which takes into account the stationarity of the
process, yields

Γ12(τ ) = 〈V1(t + τ ) V ∗
2 (t)〉 = lim

T→∞
1

2T

∫ T

−T

dt 〈V1(t + τ ) V ∗
2 (t)〉

=
∫

dω e−iωτ Γ̃12(ω), (12.45)

where

Γ̃12(ω) = lim
T→∞

1
2T

〈Ṽ1T (ω)Ṽ ∗
2T (ω)〉.

In particular,

Γ̃11(τ ) = 〈V (t+τ, x) V ∗(t, x)〉 =
∫

dω e−iωτ Γ̃11(ω),

where

Γ̃11(ω) = lim
T→∞

1
2T

〈Ṽ1T (ω) Ṽ ∗
1T (ω)〉 ≥ 0. (12.46)

For a stochastic process we may replace the expectation values by time averages. In this case
we have already seen that Γ̃11(ω) is the spectral density of the time average of the intensity.
This is the content of the Wiener–Khinchin theorem:

Theorem 12.1 (Wiener–Khinchin theorem). The covariance function

Γ11(τ ) = 〈〈v1(t + τ ) v∗1(t)〉〉 = 〈V1(t + τ ) V ∗
1 (t)〉 (12.47)

and the spectral intensity distribution Γ̃11(ω) are Fourier transforms of each other.

The Wiener–Khinchin theorem may be used to determine the spectral distribution Γ̃11(ω)
by measuring Γ11(τ ). So, with the help of time measurements, we can measure the widths of
spectral lines even when the resolution of an ordinary spectrometer turns out to be insufficient.

Because Γ̃12(ω) = 0 for ω < 0, the real and imaginary parts of Γ12(τ ) are related by
dispersion relations.
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In a quantum theoretical treatment of the radiation field, the quantities V (t, x) and
V ∗(t, x) correspond to the annihilation and creation operators of light quanta. The expec-
tation value

〈V (t1, x1) . . . V ∗(tn, xn)〉 = Tr{ρV (t1, x1) · · ·V ∗(tn, xn)}
becomes the quantum-mechanical expectation value of the quantum field in a (mixed) state
characterized by a density matrix ρ. Also in a quantum-mechanical treatment, the properties
(A) to (D) remain valid. Quantum expectation values will be dealt with in chapter 14.

12.4 Gaussian stochastic processes

In this section, we will discuss a stochastic property that can be attributed to many light wave
fields. In many cases, we are allowed to treat the field V (t, x) as a Gaussian stochastic process,
at least within a good approximation. Before we can explain the consequences of this property,
we have to define Gaussian random variables.

Let Zi (i = 1, . . . , n) be a set of stochastic variables. Without loss of generality, we may
assume these variables to have vanishing mean values: 〈Zi〉 = 0.

The variables Zi are simultaneously Gaussian distributed if their probability density is of
the form

w(z) =
1
N

e−
1
2 z·Az. (12.48)

Here, z = (z1, . . . , zn), z · Az =
∑n

i,j=1 ziAijzj , (Aij) is a positive definite symmetric
matrix, and N is a normalization factor that guarantees that

∫
dnz w(z) = 1. We can diago-

nalize (Aij) by a suitable coordinate transformation, in which case the normalization integral
becomes a product of one-dimensional Gaussian integrals:∫

dx e−
1
2 ax2

=

√
2π

a
. (12.49)

In this way we can determine the normalization factor to be N = (2π)n/2(detA)−1/2, so that
we finally obtain

w(z) =
(

det
A

2π

)1/2

e−
1
2 z·Az. (12.50)

By a simple translation zi → zi + ci, we can define Gaussian distributed random variables
with non-vanishing expectation value. According to the central limit theorem, we can expect
the variables Zi to be Gaussian distributed if the randomness of their distribution is the con-
sequence of many independent additive influences. For instance, elementary error calculus is
based on the assumption of a Gaussian distribution.

The generalized covariances,

〈Zi1 · · ·Zir
〉 =

∫
dnz zi1 · · · zir

w(z),
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are most easily obtained from the generating function

F (j) = 〈e j·Z〉 =
1
N

∫
dnz e j·z− 1

2 z·Az.

Indeed, taking derivatives with respect to j yields

〈Zi1 · · ·Zir
〉 =

∂

∂j1
· · · ∂

∂jr
F (j)

∣∣∣∣
j=0

.

We calculate F (j) by making a quadratic completion and obtain

F (j) = e
1
2 j·A−1j ,

where A−1 is the inverse matrix of A. This immediately leads to

〈ZiZk〉 = A−1
ik ,

i.e. the covariances of second order are simply given by the components of the inverse matrix
(Aik)−1. For a Gaussian distribution the higher covariances are already determined by the
covariances of second order, e.g.

〈ZiZkZrZs〉 = A−1
ik A−1

rs + A−1
ir A−1

ks + A−1
is A−1

kr .

In general, all odd covariances vanish and all even covariances can be represented as sums of
products of second covariances.

For us, this property – factorization of the higher covariances into second-order covari-
ances – will be the most important feature of Gaussian stochastic processes. As a side remark
we mention that, if Zi (i = 1, . . . , n) are Gaussian variables, then also the stochastic variables
obtained by a linear transformation,

Wk =
∑

i

CkiZi,

are simultaneously Gaussian distributed, and

〈WiWk〉 =
∑
r,k

CirCks〈ZrZs〉.

The stochastic process {V r(t, x)} is called Gaussian if for any value of n and any n
space-time points (t1, x1), . . . , (tn, xn) the random variables

V r(t1, x1), . . . , V r(tn, xn)

are simultaneously Gaussian distributed. In a similar way we define an analytic Gaussian
process V (t, x).

Due to the factorization property of generalized covariances and the additional relation
〈V1V2〉 = 〈V ∗

1 V ∗
2 〉 = 0, the covariances for which the numbers of V and V ∗ differ all vanish:

〈V1 . . . VrV
∗
r+1 . . . V ∗

n 〉 = 0.
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If V (t, x) is a Gaussian stochastic process, the linearly transformed process

W (t, x) =
∫

dt′
∫

d3x′ K(t−t′, x, x′)V (t′, x′)

is also Gaussian and we find

〈W (t1, x1)W ∗(t2, x2)〉
=

∫
dt′1

∫
dt′2

∫
dx′

1

∫
dx′

2

× K(t1−t′1, x1, x
′
1)K

∗(t2−t′2, x2, x
′
2) · 〈V (t′1, x

′
1)V

∗(t′2, x
′
2)〉.

From these relations it should be obvious that properties (A) to (D) from section 12.3 and, if
K is not too singular, also property (E) apply for W if they apply for V .

These invariances under linear transformations are of great importance for the light wave
fields V (t, x) that we consider. Indeed, because V (t, x) satisfies a linear wave equation and
contains no negative frequencies, V (t, x) depends, for arbitrary values of t, linearly on the
initial values V (t0, x). Therefore, V (t, x) is Gaussian if the process V (t0, x) is Gaussian for
any time t0. Since V (t, x) is already determined linearly by the values V (t, x(y)) on a two-
dimensional surface F, it suffices for V to be Gaussian on F. If the source of the light wave
field is a glowing surface F, e.g. the filament of a bulb or the surface of a star, the different
parts of this surface radiate in a completely uncorrelated way, and for arbitrary times and
points x1, . . . ,xn on F the variables V (t1, x1) . . . V (tn, xn) are simultaneously Gaussian
distributed. On F we even have 〈V (t1, x1)V ∗(t1, x2)〉 = Γ(0, x1, x2) = a(x1) δ(x1 − x2).
A Gaussian process on F, for which the covariance function is proportional to a δ-function, is
called white noise.

If the radiation from the source on F corresponds to white noise, the process V (t, x) will
not necessarily remain a white noise process for arbitrary values of t. However, it will always
remain a Gaussian process. In particular, the total information about the process is already
contained in the covariance function Γ12(τ ). A Gaussian stochastic process can always be
transformed into a white noise process by a suitable linear transformation of the variables.

Laser light is an example of a non-Gaussian stochastic light field. In this case, the higher
generalized covariance functions contain new information that is independent of the second
covariance functions. We shall come to these questions in chapter 14.

12.5 The quasi-monochromatic approximation

Some of the considerations concerning the coherence of a light wave field simplify consider-
ably when, due to the nature of the light source or a suitable filter, only frequencies within a
small region around a mean frequency ω are relevant. In this case, the coherence time τc is
large and we can derive an approximate expression for Γ12(τ ) that is valid as long as τ � τc.
We start with an exact definition of the coherence time τc and the spectral width σω.

If V (t, x) is stationary, we cannot define τc as an average decay time of the signal, but
only as the decay time of the correlation γ11(τ ) at a given space point.
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Due to the relation γ11(τ ) = γ∗
11(−τ ), then |γ∗

11(τ )|2 is an even function. We normalize
this function such that the integral is unity:

N =
∫

dτ |γ11(τ )|2 =
∫

dω |γ̃11(ω)|2.

Furthermore,

τ =
1
N

∫
dτ τ |γ11(τ )|2 = 0.

We define

τ2
c =

1
N

∫
dτ τ2|γ11(τ )|2,

ω =
1
N

∫
dω ω|γ̃11(ω)|2, (12.51)

σ2
ω =

1
N

∫
dω (ω − ω)2|γ̃11(ω)|2.

Indeed, for almost monochromatic light, not only 〈|Ṽ1(ω)|〉 but also

γ̃11(ω) ∼ lim
T→∞

1
2T

〈|ṼT1(ω)|2〉

are sharply peaked around ω. One can show that

τcσω
>∼ 1

2 . (12.52)

In quantum mechanics this relation is known as the uncertainty relation. Equality holds when
|γ11(τ )|2 is a Gauss function:

|γ11(τ )|2 = const. × e−τ2/2τ2
c . (12.53)

The covariance function Γ12(τ ) is given by

Γ12(τ ) =
∫

dω Γ̃12(ω) e−iωτ . (12.54)

Since we assume that Γ̃12(ω) is sharply concentrated around ω, it is helpful to consider the
quantities

eiωτΓ12(τ ) =
∫

dω Γ̃12(ω) e−i(ω−ω)τ . (12.55)

The value of |Γ̃12(ω)| is markedly different from zero only within a region of width σω. For
σωτ � 1, i.e. τ � τc, the τ dependence on the right-hand side is negligible and can be
replaced by its value at τ = 0. Thus, for τ � τc, we get

eiωτΓ12(τ ) = Γ12(0),
Γ12(τ ) ≈ e−iωτΓ12(0).
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This expression is called the quasi-monochromatic approximation for Γ12(τ ). The τ depen-
dence of exp(iωτ )Γ12(τ ) is much slower than the time dependence of the wave field. In
interference experiments, the coherence lengths are often of the order of centimeters while
the differences in the path length of interfering rays are of the order of a wavelength. In these
cases the quasi-monochromatic approximation is legitimate.

Introducing the notation

eiωτΓ12(τ ) = |Γ12(τ )| eiα12(τ) = µ12(τ ) eiα12(τ),

where α12(τ ) and µ12(τ ) are slowly varying functions, the monochromatic approximation
may also be written in the form

Γ12(τ ) ≈ µ12(0)ei[α12(0)−ωτ ]. (12.56)

Quasi-monochromatic approximations exist also for the higher generalized covariance func-
tions.

12.6 Coherence and correlation functions

We have seen that the value of the correlation function

γ12(τ ) = γ(τ, x1, x2) =
〈V (t+τ, x1) V ∗(t, x2)〉

〈|V (t, x1)|2〉1/2 〈|V (t, x2)|2〉1/2
(12.57)

is bounded by

0 ≤ |γ12(τ )| ≤ 1, (12.58)

and γ11(0) = 1. The interpretation of γ12(τ ) becomes obvious when we investigate the limit-
ing cases γ12(τ ) = 0 and |γ12(τ )| = 1.

If, for space-time points (t+τ, x1) and (t, x2), we find γ(τ, x1, x2) = 0, there are no
correlations whatsoever between the values of the wave field at these two points. If, even
more, we have γ(τ, x1, x2) = 0 for all points x1 �= x2, the wave field is totally incoherent
and Γ assumes the form of white noise:

Γ(τ, x1, x2) = aδ(x1 − x2). (12.59)

However, as we have already mentioned and as we shall see again soon, there is a certain
amount of coherence even for a surface source producing white noise.

Next we assume that for two space-time points (t+τ, x1) and (t, x2), the correlation func-
tion is unity:

|γ(τ, x1, x2)| = 1.

In this case, the equality sign holds in the correlation inequality (12.35). This implies, as we
have shown in section 12.3, that for the random variables V (t+τ, x1) and V (t, x2) a relation
of the following type holds:

V (t+τ, x1)
σ1

= eiα(τ,x1,x2)
V (t, x2)

σ2
.
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Here σ2
1,2 = 〈|V (t, x1,2)|2〉, and α12(τ ) = α(τ, x1, x2) is a fixed phase (i.e. not random).

Indeed, in this case

γ12(τ ) =
〈V1(t + τ ) V ∗

2 (t)〉
σ1σ2

= eiα(τ,x1,x2)
〈|V2(t)|2〉

σ2
2

= eiα12(τ),

and α12(τ ) is just the phase of γ12(τ ) (which is why we adopted the notation of the previous
section). For the two space-time points, the two phases have a fixed difference and, therefore,
are strictly correlated. In the extremal case, |γ12(τ )| ≡ 1 for all values of τ , x1, and x2:

V1(t1)
σ1

≡ V2(t2)
σ2

eiα12 .

Evaluating this equation for other pairs of space-time points, we see that α13 = α12 + α23,
and when we choose a reference point (t0, x0), we find α12 = α10 − α20, i.e.

V1(t1)
σ1

e−iα10 ≡ V2(t2)
σ2

e−iα20 .

On both sides of this equation we find the same random variable A with 〈|A|2〉 = 1 and which
no longer depends on the space-time point. Therefore,

V (t, x) =
√
〈|V (t, x)|2〉 eiα(t,x)A, (12.60)

and the only stochastic element is given by the space-time-independent stochastic variable A.
In particular, the phase differences between the field values at any two space-time points are
fixed. So, |γ12(τ )| ≡ 1 corresponds to the case of complete coherence of the wave field. This
suggests defining |γ(τ, x1, x2)| as the degree of coherence, where |γ(0, x1, x2)| characterizes
the spatial coherence and |γ(τ, x1, x1)| the temporal coherence at a point x1. This interpre-
tation is confirmed by the following experiment, which also provides a method for measuring
γ12(τ ).

Figure 12.2: Principle of Young’s interference experiment.

We are talking about Young’s interference experiment (fig. 12.2). A screen with two tiny
apertures at points x1 and x2 is placed into the wave field. We assume that the screen does not
change the field in any essential way at the apertures. The interference of the two excitations
emanating from x1 and x2 is observed at point x behind the screen, and the optical path
lengths S(x, x1) and S(x, x2) will be denoted by s1 and s2, respectively. The excitation at
point x is now given by the stochastic variable

W (t, x) = a1V (t−s1/c, x1) + a2V (t−s2/c, x2). (12.61)
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The coefficients a1 and a2 only depend on the size of the apertures and are, as explained in
section 10.3, purely imaginary due to the Huygens–Fresnel principle. The average intensity at
point x is proportional to

〈|W (t, x)|2〉 = |a2
1|〈|V (t, x1)|2〉 + |a2|2〈|V (t, x2)|2〉

+ |a1| |a2|{〈V (t−s1/c, x1) V ∗(t−s2/c, x2)〉
+ 〈V (t−s2/c, x2) V ∗(t−s1/c, x1)〉}.

The first two terms on the right-hand side are proportional to the intensities I(1)(x) and
I(2)(x) which we would observe if only one of the apertures were present. The third term
describes the interference. Expressed in terms of the intensities, we obtain

I(x) = I(1)(x) + I(2)(x) + 2
√

I(1)(x)
√

I(2)(x)Re γ(τ, x1, x2), (12.62)

with τ = (s2 − s1)/c. We see that Re γ(τ, x1, x2) is directly observable: x1 and x2 can be
varied by changing the position of the apertures, and τ can be changed either by shifting the
observation point x or by placing a phase shifter behind one of the apertures.

Now Im γ(τ, x1, x2) can be determined from dispersion relations or simply by shifting
the phase of the light fields at one of the holes by π/2. In the quasi-monochromatic limit the
τ dependence is particularly simple. Using the notations of section 12.5, we have γ12(τ ) =
µ12(τ ) e−iωτ+iα12(τ) and thus

Re γ12(τ ) ≈ µ12(0) cos[α12(0) − ωτ ],

Im γ12(τ ) ≈ µ12(0) sin[α12(0) − ωτ ].
(12.63)

For x1 = x2, the quantity γ11(τ ) = γ(τ, x1, x1) can also be measured directly in an interfer-
ence experiment, as indicated in fig. 12.3. In this case, the excitation at point x1 is split into
two rays (e.g. by a semitransparent mirror), which are later, after both rays have traversed paths
of different lengths, reunited for interference at point x. According to the Wiener–Khinchin
theorem, we can determine from such a measurement of γ11(τ ) the quantity γ̃11(ω), which
allows a precise measurement of a spectral intensity distribution with an extremely sharp peak.
The smaller this peak, the smaller are the variations of γ11(τ ) as a function of τ , which makes
it easier to measure.

Figure 12.3: Measuring γ11(τ).

The result (12.62) for the intensity can be rewritten in the form

I(x) = [1 − |γ12(τ )|] (I(1) + I(2))

+ |γ12(τ )|{I(1) + I(2) + 2
√

I(1)
√

I(2) cos[α12(τ ) − ωτ ]
}
. (12.64)

This remains valid even when the aperture is not tiny, as long as γ(τ, x1, x2) does not es-
sentially vary along the diameter of the aperture. One can easily show that in this case I(1)
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and I(2) are the diffraction intensities for each of the two apertures. In general, the spatial de-
pendence of the correlation γ12(τ ) is small compared to the spatial dependence of the signal
V (t, x).

Equation (12.64) confirms our interpretation of |γ12(τ )| as the degree of coherence. There
are two contributions for the intensity I(x):

• An incoherent part, which is simply the sum of the two input intensities without further
interference. This contribution is weighted by 1 − |γ12|.

• A coherent part, for which the excitations are added, and the intensity equals the square
of the total signal. For instance, for α12 − ωτ = 0 we find

Icoh =
(√

I(1) +
√

I(2)
)2

.

The presence of the second part reveals itself in an interference pattern varying with x. The
visibility of this pattern is defined by

V =
Imax − Imin

Imax + Imin
, (12.65)

where Imax and Imin are the extremal values of I corresponding to cos(α12 − ωτ ) = ±1. For
this quantity we obtain

V =
2
√

I(1)
√

I(2)

I(1) + I(2)
|γ12|, (12.66)

and, in particular, for I(1) = I(2):

V = |γ12|. (12.67)

12.7 The propagation of the correlation function

We now assume that on a surface F the covariance function

Γ12(τ ) = 〈V1(t + τ ) V ∗
2 (τ )〉

is known and we pose the problem to determine Γ12(τ ) for all points in space. This problem
is solvable because the covariance function satisfies the wave equation and we can apply the
Huygens–Fresnel principle. Taking the Fourier transform of the signal with respect to time,
Ṽ (ω, x), we can write Kirchhoff’s identity (10.41) in the form

Ṽ (ω, x) =
1
4π

∫
F

df ′ {Ṽ (ω, x′)∇′Gω(x, x′) − Gω(x, x′)∇′Ṽ (ω, x′)}. (12.68)

For |x − x′| � λ, from eq. (10.44) we obtain

Ṽ (ω, x) =
−ik
4π

∫
F

df ′ (cosχ + cos χ0) Ṽ (ω, x′)Gω(x, x′), (12.69)
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where χ0 and χ are the inclination angles of the normal wave vectors of Ṽ (ω, x) and Gω with
respect to the normal directions of F . In our case, χ0 is a random variable, and in order to
avoid a random inclination factor we replace the Green’s function Gω(x, x′) by the Dirichlet
Green’s function GDω(x, x′), which satisfies

GDω(x, x′) = 0 for x′ ∈F. (12.70)

The second term in eq. (12.69) now vanishes and we find

Ṽ (ω, x) =
−ik
4π

∫
df ′ Ṽ (ω, x′) ∇′GDω(x, x′). (12.71)

If F is a plane, we obtain GDω from Gω by applying the reflection principle:

GDω(x, x′) = Gω(x, x′) − Gω(x, x′′), (12.72)

where x′′ follows from x′ by reflection on F . Given

Gω(x, x′) = A(x, x′) eikS(x,x′),

we get

GDω(x, x′) = A(x, x′) eikS(x,x′) − A(x, x′′) eikS(x,x′′). (12.73)

On F we have x′ = x′′, and for |x − x′| � λ we obtain

(n · ∇′)GD(x, x′) = 2(n · ∇′)Gω(x, x′),

i.e.

Ṽ (ω, x) = −2ik
4π

∫
F

df ′ Ṽ (ω, x′) cos χ Gω(x, x′). (12.74)

This expression differs from the one we obtained before merely by the replacement
(cosχ + cos χ0) → 2 cos χ. In leading order of k, both expressions are identical. So we
assume that

Ṽ (ω, x) =
∫

F

df ′ ΛṼ (ω, x′)Gω(x, x′), (12.75)

with an inclination factor Λ = −(i/λ) cosχ. Inserting the covariance function yields

Γ̃(ω, x1, x2) =
∫

F

df ′
1 df ′

2 Λ1Λ∗
2Γ̃(ω, x′

1, x
′
2)Gω(x1, x

′
2)G

∗
ω(x2, x

′
2), (12.76)

and after a Fourier transformation

Γ(τ, x1, x2) =
1
2π

∫
dω Γ̃(ω, x1, x2) e−iωτ

=
∫

F

df ′
1 df ′

2 Λ1Λ∗
2A(x1, x

′
1)A

∗(x2, x
′
2)

× Γ
(
τ − S(x1, x

′
1)/c + S(x2, x

′
2)/c, x′

1, x′
2

)
. (12.77)
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This expression simplifies further when we make the following assumptions:

• The quasi-monochromatic approximation holds:

τ − 1
c
S11′ +

1
c
S22′ � τc. (12.78)

• On F the function Γ(τ, x′
1, x

′
2) corresponds to white noise:

Γ(τ, x′
1, x

′
2) = I(τ, x′

1) δ(2)(x′
1 − x′

2). (12.79)

For a distant filament lamp or a fixed star, both observed through a filter, these assumptions
are satisfied. We then find

Γ(τ, x1, x2) =
∫

F

df ′
1 Λ1Λ∗

2A(x1, x
′
1)A

∗(x2, x
′
1)

× I(ω, x′
1) · e−iω[τ−(1/c)S11′+(1/c)S22′ ]. (12.80)

For a very distant object we have Λ1 = Λ2, and we may put slowly varying quantities in front
of the integral:

Γ(τ, x1, x2) = A(x1, x
′
0)A

∗(x2, x
′
0)

×
∫

F

df ′
1 |Λ|2I(ω, x′

1) · e−iω[τ−(1/c)S11′+(1/c)S22′ ]. (12.81)

The average intensity at point x1 is proportional to

Γ(0, x1, x1) = |A(x1, x
′
0)|2

∫
F

df ′ |Λ|2I(ω, x′). (12.82)

So, we obtain as the final result for the normalized correlation function:

γ(0, x1, x2) =

∫
F

df ′ |Λ|2I(ω, x′) e(iω/c)[S(x1,x′)−S(x2,x′)]∫
F

df ′ |Λ|2I(ω, x′)
. (12.83)

This expression resembles a diffraction integral in which the pupil function has been replaced
by the intensity distribution |Λ|2I(ω, x′). This fact is known as the van Cittert–Zernicke the-
orem:

Theorem 12.2 (van Cittert–Zernicke theorem). In the quasi-monochromatic approxima-
tion, the correlation function γ(0, x1, x2) for the radiation of a white planar source, consid-
ered as a function of x1, resembles the diffraction field of an aperture centered around x2 and
with pupil function |Λ|2I(ω, x).

For a very distant source we may in addition apply Fraunhofer’s approximation, i.e. we may
expand the exponent up to linear terms in x′

0:

iω
c

S(x1, x
′) − iω

c
S(x2, x

′) = iψ12 + ikp12 · ξ, (12.84)
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and we get

γ(0, x1, x2) = eiψ12

∫
F

d2ξ |Λ|2I(ω, ξ) eikp12·ξ∫
d2ξ |Λ|2I(ω, ξ)

. (12.85)

If, for instance, the source consists of a homogeneous radiating circular disc of radius ρ, the
function γ(0, x1, x2) assumes the form of an Airy function:

γ(0, x1, x2) = eiψ122J1(v)/v,

with v = kρp = kρd/R.
(12.86)

Here, p = d/R is the angle at which the two points x1 and x2 (with |x1 − x2| = d) are seen
from a source at a distance R = |x1,2 − x′

0|.

12.8 Amplitude and intensity interferometry

12.8.1 Amplitude interferometry: Michelson interferometer

As we have seen in section 10.7, the resolution of a telescope is limited by the diameter of the
frontal aperture d. The smallest angle α that can just be resolved is of the order

α = λ/d.

The Michelson interferometer is an arrangement by which one can achieve a virtual effec-
tive aperture diameter of up to 10 m. The principal features are shown in fig. 12.4. The light
from the observed astronomical object falls on two mirrors, which are separated by a distance
d. Two additional mirrors direct the rays into a telescope and map them into the focal plane.
The distance d can be changed.

Figure 12.4: Principle of a Michel-
son interferometer.

We first consider the case of a single point-like object, such as a distant star with a small
radius. If the mirrors are circular, we will see in the focal plane the diffraction image of two
circular apertures of distance d, which is an Airy pattern, traversed by straight interference
fringes (see section 10.6). The distance between the straight interference fringes is of the
order fλ/d.

Suppose now that we observe two point-like objects, say, a binary system, having a very
small angular distance α. Due to the different incidence angles there will be a relative phase
shift at the two mirrors, which in turn results in a relative displacement of the diffraction
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patterns transverse to the straight fringes by a distance fα. If we now vary d, the distance
between the straight fringes changes, and for λ/2d = α the maximum of the image of one
component lies on top of the minimum of the image of the other component, which results in
the minimal visibility of the straight fringes part of the interference pattern. In this way, even
very narrow binary systems can be resolved.

The Michelson arrangement is useful not only for the resolution of binary systems but
also for measuring the diameters of stars. In this case we should think of the object as a small
disk-like luminosity distribution with a small angular diameter α. At first sight one might
expect that for such an object the straight interference fringes would be completely smeared
out; however, this is not the case, and the best way to understand this phenomenon is via the
van Cittert–Zernicke theorem.

Both mirrors receive the same intensity of light from the star having angular diameter α.
According to section 12.6, this leads to an intensity distribution in the focal plane that is given
by

I(x) = 2I(1)(x)[1 + Re γ(τ, x1, x2)], (12.87)

where x1 and x2 are the positions of the two mirrors and |x1 − x2| = d is their distance
apart. I(1) resembles an Airy distribution. But according to the van Cittert–Zernicke theorem
we have

γ(τ, x1, x2) = eiψ12−iωτ

∫
d2ξ |Λ|2I(ω, ξ) eikp12·ξ∫

d2ξ |Λ|2I(ω, ξ)
. (12.88)

Thus, the correlation function γ12(τ ) directly measures the Fourier transform of the intensity
distribution. On the other hand, according to eq. (12.87), it is directly observable when we vary
x1 and x2 and record the changes in the interference pattern. In this way we can determine not
only the apparent diameter of the source but in principle even the total intensity distribution.

For a disk-like source like a fixed star, γ12 is described by an Airy distribution:

γ12(0) ∼ 2J1(πdα/λ)
πdα/λ

, (12.89)

where d is the separation of the mirrors and α is the apparent diameter of the star. The inter-
ference pattern has minimal visibility if the following condition is fulfilled:

πdα/λ = 1.22π, i.e. α = 1.22λ/d. (12.90)

By varying d, one can determine the diameters of large fixed stars. For instance, already in the
1920s this method yielded the value α = 0.047′′ for Betelgeuse.

The problem in Michelson’s method lies in the extremely high demands for the stability of
the arrangement. The distance between the two mirrors must be kept stable within fractions of
the wavelength of light, which is difficult to achieve, in particular, when it should be possible
to direct the instrument towards different stars.

12.8.2 Photon correlation spectroscopy

This stability problem is avoided by the so-called intensity correlation spectroscopy, first pro-
posed in 1957 by R. Hanbury Brown and R. Q. Twiss (fig. 12.5). What is measured in this
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method are the correlations in the intensity fluctuations of the object signal at two distant
points x1 and x2:

∆I1,2 ∼ (|V1,2|2 − 〈|V1,2|2〉). (12.91)

Cables conduct the two intensity signals to a correlator, which measures the correlations. The
demands for mechanical stability are low. Furthermore, the intensity varies much slower than
the signal itself, making the measurement of 〈∆I1∆I2〉 really manageable.

Figure 12.5: Principle of intensity correlation
spectroscopy.

Using the tools derived up to now, we can easily understand the principles of the method
of Hanbury Brown and Twiss. Because the wave field of an extended object can be consid-
ered (almost) as a Gaussian stochastic process, we can determine the correlation function
〈∆I1∆I2〉 using the factorization properties mentioned in sections 12.3 and 12.4:

〈∆I1∆I2〉 ∼
〈
[V1V

∗
1 (t + τ ) − 〈V1V

∗
1 〉] [V2V

∗
2 (t) − 〈V2V

∗
2 〉]

〉
= 〈V1(t + τ )V ∗

1 (t + τ )V2(t)V ∗
2 (t)〉 − 〈V1V

∗
1 〉〈V2V

∗
2 〉

= 〈V1(t + τ )V ∗
2 (t)〉〈V ∗

1 (t + τ )V2(t)〉 (12.92)

+ 〈V1V
∗
1 〉〈V2V

∗
2 〉 − 〈V1V

∗
1 〉〈V2V

∗
2 〉

= |Γ12(τ )|2.
Hence, the correlation of the intensity fluctuations is a direct measure for the absolute value
of the covariance function Γ12(τ ). The phase can easily be calculated within the quasi-mono-
chromatic approximation, whereas, in general, it is determined by dispersion relations. This
leads us to the surprising result that, via the van Cittert–Zernicke theorem, we can determine
the shape of the source of a wave field by correlation measurements of intensity fluctuations.
At least in principle it should be possible to determine the shape of an egg frying in a pan by
measuring the intensity correlations of the sound.

Due to the extremely low intensities, the practical realization of this method has to rely on
correlation measurements of photon counting rates in photomultipliers. This will be described
in chapter 14.

Intensity correlation spectroscopy is mainly used in radioastronomy using radio waves. In
this case, several radio telescopes, often thousands of kilometers apart, are connected for the
measurement of the intensity correlations.

12.9 Dynamical light scattering

Stochastic wave fields do not always have their origin in some stochastic source – they can also
be produced by reflection, refraction, diffraction, and scattering of coherent waves at stochastic
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structures. An example of such a situation is the speckle effect, which we will describe in the
next section.

Dynamical light scattering refers to the scattering of light at stochastically distributed
scattering centers. Here, we want to describe in a simple way how we can obtain information
about the shape and the dynamics of the distribution of these scattering centers by measuring
correlation functions.

Let us first consider a single scattering center located at a point xi(t) at time t. To simplify
matters, we restrict the discussion to scalar wave theory. An incoming plane wave e−i(ωt−k·x)

will produce a scattered wave emanating from xi(t). Like we did in section 11.3, we make
the following ansatz for the scattered wave under the condition that |vi(t)| = |ẋi(t)| � c:

v(t, x) = A e−iωt eik·xi(t)
eik|x−xi(t)|

|x − xi(t)| . (12.93)

For large distances from the scattering center we find approximately

v(t, x) = A
eik|x|

|x| e−iωt e−iq·xi(t), (12.94)

where

q = k′ − k = k
x

|x| − k. (12.95)

[Strictly speaking, the factor k in eq. (12.95) has to be replaced by the quantity k′ = k + ∆k,
taking into account the Doppler shift. However, for |vi|/c � 1 and q �= 0, the difference is
negligible.] For several stochastically distributed scattering centers, the locations Xi(t) are
stochastic variables and the stochastic scattered wave field is given by

V (t, x) = A
eik|x|

|x| e−iωt
∑

i

e−iq·Xi(t). (12.96)

From this we find for the covariance function:

〈V (t, x)V ∗(t′, x)〉 = |A|2
∑
i,j

e−iω(t−t′) 〈e−iq·[Xi(t)−Xj(t
′)]〉. (12.97)

For the simplest and most common cases, the quantity |A|2 is simply a constant. In general,
|A|2 is proportional to the differential cross-section for the scattering at a single scattering
center.

Let wij(t, t′; x, x′) be the simultaneous position distribution on R
3 × R

3, which corre-
sponds to the joint probability that we find center i at time t close to x and center j at time t′

close to x′. Then

〈e−iq·[Xi(t)−Xj(t
′)]〉 =

∫
d3x

∫
d3x′ wij(t, t′; x, x′) e−iq·(x−x′). (12.98)

Setting

wij(t, t′; x, x′) = Cij(t−t′, x−x′), (12.99)
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we find that the expectation value (12.98) is proportional to the spatial Fourier transform of
the so-called pair distribution function Cij(t−t′, x−x′):

〈V (t, x)V ∗(t′, x)〉 ∼ |A|2
∑
i,j

e−iω(t−t′) C̃ij(t−t′, q). (12.100)

(The x dependence on the right-hand side of eq. (12.100) is hidden in the momentum trans-
fer q.)

If, instead of discrete point-like scattering centers, we are considering a random scattering
density distribution ρ(t, x), eqs. (12.96) and (12.100) are replaced by

V (t, x) = A
eik|x|

|x| e−iωt

∫
d3x′ ρ(t, x′) e−iq·x (12.101)

and

〈V (t, x)V ∗(t′, x)〉 ∼ |A|2 e−iω(t−t′) C̃(t−t′, q), (12.102)

where now C̃(t−t′, q) is the spatial Fourier transform of the covariance function:

C(t−t′, x−x′) = 〈ρ(t, x)ρ∗(t′, x′)〉. (12.103)

The structure function C̃(τ, q) contains information about the space-time correlations of
the scattering centers. The quantity 〈V (t, x)V ∗(t′, x)〉, which is proportional to C̃(τ, q), can
be measured directly with the methods described in section 12.6. However, in many cases, a
more accessible quantity to measure is the Fourier transform:

I(ω′, q) =
∫

dτ eiω′τ 〈V (t, x)V ∗(t+τ, x)〉

∼ |A|2
∫

dτ ei(ω′−ω)τ C̃(τ, q). (12.104)

According to the Wiener–Khinchin theorem (12.47), I(ω′, q) is proportional to the spectral
density of the scattered radiation that is observed at a momentum transfer q, i.e. the differential
cross-section of the inelastic scattering with frequency change ∆ω = ω′ − ω.

Instead of measuring 〈V (t, x)V ∗(t′, x′)〉, it is often more convenient to measure the cor-
relations of intensity fluctuations, which are proportional to 〈∆|V (t, x)|2∆|V (t′, x)|2〉 and
which, for a Gaussian stochastic process, contain the same information as 〈V (t, x)V ∗(t′, x′)〉
(see section 12.8).

This general discussion about the scattering of waves at stochastically distributed centers
can be applied not only to the scattering of light, but also, for example, to the scattering of
neutrons in matter. Here we mention just a few of the numerous applications:

1. Scattering of light by a dilute solution of polymer molecules. The scattering centers are
the segments of long chain molecules. Because the different segments within the chain
have different positions along the chain, the scattering centers are not equivalent. The
structure function C̃ij(τ, q) depends on the dynamical behavior of the polymer chain,
like, for example, the degree of stretching or entanglement. We can treat the scattering of
light by macromolecules in dilute solutions or by colloidal solutions of small particles in
a similar way.



12.9 Dynamical light scattering 235

2. Dynamical pair correlation functions of material media. In this case the scattering cen-
ters are the molecules of a gaseous, liquid, or solid medium. In general, the molecules
may be considered as equivalent such that the indices i and j in eq. (12.100) can be omit-
ted. The pair correlation function C(0, x−x′) determines the thermodynamic properties
of the medium, while C(τ, x−x′) contains information about the relaxation behavior
following a disturbance or about transport coefficients such as the thermal conductivity,
the diffusion constant, or the viscosity.

3. Light scattering at density fluctuations in a transparent fluid. This is an example of scat-
tering by a continuous distribution. Basically, the scattering occurs at fluctuations of the
refractive index, but these are mainly due to density fluctuations. C̃(0, 0) is related to the
isothermal compressibility; the τ dependence of C̃(τ, q) is damped exponentially and
characterizes the relaxation after a disturbance of the density distribution. Close to the
critical point the density fluctuations are long-ranged and long-lived.

There are two types of density fluctuations in stationary media:

• thermal fluctuations due to temperature variations and thermal expansion – they are
damped by thermal conduction; and

• mechanical fluctuations, i.e. sound waves, which are damped by inner friction and
thermal conduction.

Associated with these two density fluctuations one observes two different kinds of max-
ima in the temporal Fourier transform I(ω′, q) of C̃(τ, q):

• a so-called Rayleigh peak at ω′ = ω, whose width is determined by the thermal
conductivity; and

• two so-called Brillouin peaks at the Doppler-shifted positions ω′ = ω± cs|q|, where
cs is the velocity of sound – the width of the Brillouin peaks depends on the viscosity
of the medium.

4. X-ray spectroscopy of crystals. With respect to the metric in a crystal lattice, the equal-
time pair distribution C(0, x−x′) is spatially periodic, i.e. C̃(0, q) is concentrated in the
form of a δ-function on a reciprocal lattice with discrete values of q (see section 10.7).
From the structure function C̃(τ, q) one can determine the form and the dynamics of
the crystal lattice. In many cases, however, one is less interested in the structure function
itself than in the factor |A|2 in eq. (12.102), which characterizes the shape of a single scat-
tering center. The complicated molecules to be investigated are crystallized such they are
aligned and periodically distributed. The structure function C̃(0, q) serves the purpose to
concentrate the intensity of the scattered light along the directions of the discrete maxima
of C̃(0, q).
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12.10 Granulation

When laser light is reflected from a diffuse surface F ′, the produced radiation field exhibits
a speckled structure that can be seen by the naked eye. This phenomenon, called the speckle
effect, is a nice application of the results we obtained in this chapter.

Let the laser light have a fixed frequency ω. Due to the random irregularities on F ′, a sto-
chastic wave field V (ω, x′) (x′ ∈F ′) is generated right in front of F ′. On some other surface
F there will be, according to eq. (12.68) or (12.75), a linearly transformed field V (ω, x) with
x ∈F . In particular, if F is the focal plane of the imaging system, the linear transformation is
a Fourier transformation. In general, the wave field on F ′ will be close to Gaussian or even
white noise. Therefore, there will be a Gaussian wave field also on F , which, however, for
most cases is not white noise.

The wave field on F is called the objective speckle pattern and has to be distinguished
from the subjective speckle pattern, which refers to the speckle pattern on the retina of our
eye. Diffraction effects at the pupil of the eye contribute to the subjective speckle pattern.
Only if F is the focal plane of some optical system may the objective and subjective speckle
patterns be identified, but even in this case diffraction effects in the eye can make things more
complicated: in some cases one perceives finer granules within each coarse grain.

We now consider the intensity distribution of the objective speckle pattern on F . For a fixed
point x ∈F , the distribution of the complex amplitude V (ω, x) will be a two-dimensional
Gaussian distribution of the form

w(v) =
1
N

e−v∗v/2σ2
. (12.105)

Writing v = v1 + iv2 we get

w(v1, v2) dv1 dv2 =
1
N

e−(v2
1+v2

2)/2σ2 |v| d|v| dϕ

=
1

2N
e−|v|2/2σ2

d|v|2 dϕ, (12.106)

where |v|2 = v2
1 + v2

2 .
So the distribution of the intensity I = |v|2/2 at point x ∈F is simply given by an expo-

nential function:

w(I) =
1
〈I〉 e−I/〈I〉, (12.107)

where the average intensity is 〈I〉 = σ2, and for the variance of I one obtains

σ2
I = 〈I〉2. (12.108)

Notice that I = 0 has largest probability. The grain size of the speckle pattern is given by the
correlation length of the intensity distribution.

According to eq. (12.92) and the van Cittert–Zernicke theorem (12.88), it is the correlation
function γ(0, x1, x2) on F that is relevant. If the illuminated surface on F ′ is circular with
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diameter d, there will be an Airy distribution and the grain size is given by

D = 1.22
λ

d
L, (12.109)

where L is the distance between F ′ and F .
Apart from being a disturbing side-effect, the speckle effect also has many useful applica-

tions in measurement technology. It is used, for instance, to make visible tiny displacements
or to observe the flow fields in fluids that have been dotted with small scattering particles. We
will now explain the principle of such experiments for the particularly nice example of speckle
interferometry of stars.

Irregularities in the density and humidity of the atmosphere lead to the scintillation of
starlight. Due to these effects, the observed light of a star seems to have spatial and temporal
fluctuations. The spatial extension of these inhomogeneities is of the order of 0.1 cm to 10 cm,
and the lifetime is about 0.1 s. Starlight is coherent enough to produce a speckle pattern, which
can be photographed if the exposure time is sufficiently short. The film then exhibits a speckle
distribution I1(x).

Two close-by stars produce an intensity distribution of the form

I(x) = I1(x) + ρI1(x + d), (12.110)

which consists of two similar distributions that are slightly shifted with respect to each other.
The factor ρ accounts for the different luminosities of the stars.

For the Fourier transform, which can also be realized optically by the methods described
in chapter 10, we find

Ĩ(k) = Ĩ1(k)(1 + ρ eik·d), (12.111)

i.e.

|Ĩ(k)|2 = |Ĩ1(k)|2[1 + ρ2 + 2ρ cos(k · d)]. (12.112)

From the width of the pattern of stripes traversing the distribution |Ĩ(k)|2, one can determine
the size of d and thus the angular distance of the two stars.

12.11 Image processing by filtering

Often a signal suffers interference by random influences. This leads to the problem of undoing
the disturbances as far as possible and recovering the undisturbed signal. The so-called Wiener
filter is one tool for this purpose.

As a concrete example, we think of an image that can be described by a two-dimensional
intensity distribution I(x) with x ∈ R

2. We assume I(x) to be a stochastic process (see sec-
tion 12.3).

A stochastic disturbance Σ(x) will be superimposed onto the distribution I(x) and what
we observe is the sum of the two:

Z(x) = I(x) + Σ(x). (12.113)
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We can measure the covariance function,

CZZ(x − y) = 〈∆Z(x)∆Z(y)〉 (12.114)

with ∆Z(x) = Z(x) − 〈Z(x)〉, as well as 〈Z(x)〉. Furthermore, we assume that we know
the characteristic features of the disturbance Σ,

CΣΣ(x − y) = 〈∆Σ(x)∆Σ(y)〉 (12.115)

and 〈Σ(x)〉. For instance, Σ may be white noise.
In eqs. (12.114) and (12.115) we have assumed I and Σ to be translation-invariant. Fur-

thermore,

CIΣ(x − y) = 〈∆I(x)∆Σ(y)〉 = 0, (12.116)

i.e. the signal I and the disturbance Σ are uncorrelated.
As an estimator Î for an optimal reconstruction of the signal I , we take a stochastic process

that results from the observed signal Z by a linear transformation:

Î(x) = (hZ)(x) + w(x) =
1
2π

∫
d2y h(x − y)Z(x) + w(x), (12.117)

where again we have assumed translation invariance.
The non-stochastic quantities h and w are not yet known and will be determined from the

condition that the expectation value

σ2 = 〈(I − Î)2〉 =
〈∫

d2x [I(x) − Î(x)]2
〉

(12.118)

=

〈∫
d2x

[
I(x) − 1

2π

∫
d2y h(x − y)Z(y) − w(x)

]2
〉

becomes minimal. This expresses the idea that, in the average, Î is an optimal reconstruction
of I . Variation with respect to w yields

〈I(x)− (hZ)(x)〉−w(x) =
〈

I(x) −
∫

d2y h(x − y)Z(y)
〉
−w(x) = 0, (12.119)

i.e.

w(x) = 〈I(x)〉 − (h〈Z〉)(x) = 〈I(x)〉 − 1
2π

∫
d2y h(x − y)〈Z(y)〉. (12.120)

Variation with respect to h leads to the condition

0 = 〈[I(x) − (hZ)(x) − w(x)]Z(y)〉. (12.121)

Inserting eq. (12.120) we find

0 = 〈[∆I(x) − (h∆Z)(x)]∆Z(y)〉
= CIZ(x − y) − 1

2π

∫
d2u h(x − u)〈∆Z(u)∆Z(y)〉

= CIZ(x − y) − 1
2π

∫
d2u h(x − u)CZZ(u − y). (12.122)
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This is a linear integral equation for h. In new variables, it may be written in the form

CIZ(x) =
1
2π

∫
d2y h(x − y)CZZ(y). (12.123)

This equation is referred to as the Yule–Walker equation. Taking into account eqs. (12.113)
and (12.116) we obtain

CIZ(x) = CII(x) = CZZ(x) − CΣΣ(x), (12.124)

which contains only known and measurable quantities.
Due to the assumed translational invariance, the Yule–Walker equation for h can be solved

easily by Fourier transformation and applying the convolution theorem:

h̃(k) =
C̃ZZ(k) − C̃ΣΣ(k)

C̃ZZ(k)
. (12.125)

Hence, we have found a “filter” for an optimal linear estimator for the reconstruction of the
signal. This is called the Wiener filter.

12.12 Polarization of partially coherent light

We cannot describe the polarization effects of a stochastic light wave field using a scalar
analytical signal V (t, x). If we want to include these effects, we have to describe the three
components of the electric field strength by three analytical stochastic signals Ei(t, x). Now,
the covariance function, 〈Ei(t+τ, x1)E∗

j (t, x2)〉, assumes values in a matrix.
We restrict ourselves to the important case in which the wave field is observed only at one

point x; we set τ = 0 and assume that the propagation of light occurs along the 3-axis. In this
case E3 ≡ 0, and the polarization can be described by a 2 × 2 matrix:

S =
( 〈E1E

∗
1 〉 〈E1E

∗
2〉

〈E2E
∗
1 〉 〈E2E

∗
2〉

)
=

(
S11 S12

S21 S22

)
. (12.126)

Obviously, S11 ≥ 0, S22 ≥ 0, and S12 = S∗
21, i.e. the matrix S is Hermitian: S = S+. Any

Hermitian 2 × 2 matrix may be written in the form

S =
(

s0 + s1 s2 + is3

s2 − is3 s0 − s1

)
= s01 + s · σ, (12.127)

where

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i

−i 0

)
, (12.128)

are the well-known σ matrices. (Compared to the standard notation used in quantum mechan-
ics, the labeling is different in order to be consistent with the convention used in optics.) The
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parameters s0, s1, s2, and s3 characterize the polarization and are called the Stokes param-
eters. Our first aim will be to reveal their meaning. The allowed values for s0 and s are not
completely arbitrary but are subject to the conditions s0±s1 ≥ 0, i.e. s0 ≥ 0, and, in addition,
we can deduce from the correlation inequality that

|〈E1E
∗
2 〉|2 ≤ 〈E1E

∗
1 〉〈E2E

∗
2 〉,

S12S21 ≤ S11S22, (12.129)

det S = S11S22 − S12S21 = s2
0 − s2 ≥ 0.

The determinant of S is non-negative, which leads to an additional constraint for the Stokes
parameters:

s0 ≥ |s| := s. (12.130)

The trace of S,

TrS = 〈E1E
∗
1〉 + 〈E2E

∗
2 〉 = 2s0, (12.131)

is proportional to the average intensity. A rotation around the 3-axis,

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
,

transforms S into

SR = R(θ)SR+(θ). (12.132)

Since

TrSR = Tr
(
R(θ)SR+(θ)

)
= Tr(SR+R) = TrS, (12.133)

the intensity remains unchanged, as was to be expected.
Some more operations that one can perform on the wave field using matrices are as fol-

lows:

• A phase shift by a phase ψ of E1 relative to E2 by a so-called compensator, which
consists of small plates cut from an optically uniaxial crystal. Such a compensator can be
represented by a matrix

K =
(

eiψ/2 0
0 e−iψ/2

)
.

We find

SK = K(ψ)SK+(ψ) =
(

S11 eiψS12

e−iψS21 S22

)
, (12.134)

and, of course, TrS = Tr SK .
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• Propagation through a polarization filter. In this case the E vector is projected onto the
polarization direction n = (cosϑ, sin ϑ, 0) of the filter. A polarization filter is repre-
sented by a projection operator

P (ϑ) =
(

cos2 ϑ sin ϑ cos ϑ
sin ϑ cos ϑ sin2 ϑ

)
, (12.135)

which satisfies P+(ϑ) = P (ϑ) = P 2(ϑ). We find

SP = PSP

and in this case

Tr SP = Tr(PSP ) = Tr(SP 2) = TrSP ≤ Tr S, (12.136)

because part of the intensity is absorbed by the filter.

We can directly determine all the matrix elements of S by intensity measurements using com-
binations of polarization filters and compensators. For instance,

Tr SP (0) = S11 = s0 + s1,

Tr SP (π/2) = S22 = s0 − s1, (12.137)

Tr SP (π/4) = 1
2 (S11 + S22 + S12 + S21) = s0 + s2,

Tr
(
K(π/2)SK+(π/2)P (π/4)

)
= 1

2 (S11 + S22 + iS12 − iS21) = s0 − s3.

For a better understanding of how the information about the polarization is hidden in the
matrix S, we first consider some special cases:

1. Completely unpolarized light. There is no preferred direction and there is no correlation
between the different components of E. So

S =
( 〈E2〉 0

0 〈E2〉
)

, i.e. S = s01, s = 0, detS = s2
0. (12.138)

2. Strictly planar polarization. Now, E2 is already completely determined by E1 and shares
the same phase as E1:

E1 = AE2 (A real),

S = 〈E1E
∗
1 〉

(
1 A
A A2

)
. (12.139)

For this case we find detS = 0 and s3 = 0.

3. Strictly elliptical polarization with the axes of the polarization ellipsoid in the 1–2 direc-
tion. For this case also, E2 is completely determined by E1 and there is a phase difference
between the two components of ±π/2:

E1 = ±iAE2 (with A > 0),

S = 〈E1E
∗
1 〉

(
1 ±iA

∓iA A2

)
, (12.140)

Again, we find detS = 0.
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4. Strictly elliptical polarization with arbitrary direction of the axes. This follows by apply-
ing a rotation.

For all cases of strict polarizations we find detS = 0. It turns out that any polarization matrix
S can be written uniquely as the sum of a completely unpolarized and a completely polarized
part:

S = Su + Sp. (12.141)

In order to find this splitting, we observe that S has the eigenvalues λ1,2 = s0 ± |s| = s0 ± s,
and that det(S − λ1,21) = 0. Therefore, S = λ1,21 + (S − λ1,21). The requirement that the
diagonal elements of S − λ1,21 shall not be negative leads to the unique splitting

S =
(

s0 − s 0
0 s0 − s

)
+

(
s + s1 s2 + is3

s2 − is3 s − s1

)
. (12.142)

The intensity of the polarized part is

Ip = TrSp = 2s (12.143)

and for the unpolarized part we find

Iu = TrSu = 2s0 − 2s. (12.144)

So, the degree of polarization is given by

p =
Ip

Ip + Iu
=

s

s0
. (12.145)

Indeed, we obtain 0 ≤ p ≤ 1, where the extremal values correspond to the completely un-
polarized and the completely polarized cases. Having found the degree of polarization, we
now want to extract the type of polarization. For this purpose we consider the transformation
behaviour of the Stokes parameters under a rotation R(θ). We find the following replacements:

s0 −→ s′0 = s0,

s1 −→ s′1 = s1 cos(2θ) − s2 sin(2θ),
s2 −→ s′2 = s1 sin(2θ) + s2 cos(2θ), (12.146)

s3 −→ s3,

s −→ s.

Making a rotation by an angle θ0, where

tan(2θ0) = −s2/s1, (12.147)

we can arrange s′2 = 0 such that the polarized part assumes the form of eq. (12.140):

Sp =
(

s + s′1 is3

−is3 s − s′1

)
=

(
s ±

√
s2
1 + s2

2 is3

−is3 s ∓ √
s2
1 + s2

2

)
. (12.148)
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Therefore, the polarized part describes

• a linearly polarized wave for s3 = 0, and

• an elliptically polarized wave for s3 �= 0, where the sign determines the rotational direc-
tion along the polarization ellipsoid.

The directions of the axes of the polarization ellipsoid are given by

tan θ0 = −s2/s1,

and the ratio of the absolute values of the axes is

α2 =
s −

√
s2
1 + s2

2

s +
√

s2
1 + s2

2

. (12.149)

The values s1 = s2 = 0 imply a circular polarization and s =
√

s2
1 + s2

2, i.e. s3 = 0, a linear
polarization.



13 Quantum states of the electromagnetic field

13.1 Quantization of the electromagnetic field and
harmonic oscillators

The quantization of the free electromagnetic field can be reduced to the quantization of an
infinite system of uncoupled harmonic oscillators. So, we first have to recapitulate the quanti-
zation of a simple harmonic oscillator.

A simple classical harmonic oscillator is defined by the equation of motion

mq̈ + kq = 0 (13.1)

with solution

q(t) = α cos(ωt) + β sin(ωt) (13.2)

and the frequency ω given by ω =
√

k/m. Replacing k by ω, we obtain for the conserved
energy

E =
m

2
q̇2 +

mω2

2
q2 (13.3)

and for the classical Hamiltonian

Hcl =
p2

2m
+

mω2

2
q2. (13.4)

For quantization, the momentum p = mq̇ and the position q are replaced by operators P
and Q with

[P, Q] =
�

i
1, (13.5)

giving the Hamilton operator:

H =
P 2

2m
+

mω2

2
Q2. (13.6)

Rescaling P and Q to dimensionless quantities, we obtain

H = �ω

[
1
2

(
P√
m�ω

)2

+
1
2

(√
mω

�
Q

)2 ]
(13.7)

= �ω( 1
2X2

2 + 1
2X2

1 ). (13.8)
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The eigenvalues and eigenstates of H are obtained in a purely algebraic way. We introduce
the operator

a =
1√
2
(X1 + iX2) (13.9)

and its adjoint

a+ =
1√
2
(X1 − iX2). (13.10)

From

[X1, X2] = i1, (13.11)

we immediately obtain

[a, a+] = 1. (13.12)

Here a and a+ are called the annihilation operator and the creation operator, respectively,
and

X1 =
1√
2
(a + a+), X2 =

1√
2i

(a − a+) (13.13)

are called the quadratures associated with a and a+. In terms of a and a+, the Hamilton
operator H becomes

H = �ω(a+a + 1
2 ). (13.14)

The eigenvalues and eigenstates of N = a+a are easily obtained in the following way. Let
|ν〉 be a state with

N |ν〉 = ν|ν〉, 〈ν|ν〉 = 1,

then

Na|ν〉 = aN |ν〉 + [N, a]|ν〉 = (ν − 1)a|ν〉,
〈aν|aν〉 = 〈ν|a+aν〉 = ν, (13.15)

and

Na+|ν〉 = [N, a+]|ν〉 + a+N |ν〉 = (ν + 1)a+|ν〉,
〈a+ν|a+ν〉 = 〈ν|aa+ν〉 = ν + 1. (13.16)

So, a+ and a raise and lower the eigenvalue of N by one unit. Because N is a non-negative
operator, ν has to be a non-negative integer n.

Starting from a ground state |0〉 with a|0〉 = N |0〉 = 0, 〈0|0〉 = 1, we can obtain the
excited states

|n〉 =
(a+)n

√
n!

|0〉 (13.17)
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with N |n〉 = n|n〉, which are also eigenstates of H:

H|n〉 = �ω(n + 1
2 )|n〉. (13.18)

Harmonic oscillators in f -dimensional space can, by linear transformation, always be re-
duced to f decoupled harmonic oscillators with

H =
f∑

l=1

�ωl(a+
l al + 1

2 ), (13.19)

where

[al, am] = [a+
l , a+

m] = 0, [al, a
+
m] = δlm1. (13.20)

The normalized eigenstates are

|n1, . . . , nf 〉 =
(a+

1 )n1

√
n1!

· · · (a+
f )nf√
nf !

|0〉,

〈n1, . . . , nf |n′
1, . . . , n

′
f 〉 = δn1n′

1
· · · δnf n′

f
, (13.21)

H|n1, . . . , nf 〉 =
f∑

l=1

�ωl(nl + 1
2 )|n1, . . . , nf 〉.

From eq. (13.7) we see the following. Different harmonic oscillators with different values
of mω give rise to different quadratures X ′

1 and X ′
2 of the form:

X ′
1 = erX1, X ′

2 = e−rX2, (13.22)

and different annihilation and creation operators

a′ = a cosh r + a+ sinh r,

a′+ = a sinh r + a+ cosh r.
(13.23)

These X ′
1, X ′

2, a′, and a′+ also fulfill the commutation relations (13.11) and (13.12). Another
linear transformation conserving the commutation laws is a rotation of the quadratures:

X ′
1 = X1 cos θ + X2 sin θ,

X ′
2 = −X1 sin θ + X2 cos θ,

(13.24)

or

a′ = a e−iθ, a′+ = a+ eiθ. (13.25)

The transformations (13.22) and (13.23) are called Bogolyubov transformations, and every
linear inhomogeneous transformation preserving Hermiticity properties and the commutation
laws is a product of rotations, Bogolyubov transformations, and translations a′ = a + α1,
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a′+ = a+ + α∗1. For r degrees of freedom, the linear transformations preserving relations
(13.20) are symplectic transformations.

An irreducible representation of the commutation relations (13.20) with Hermitian opera-
tors X1l and X2l is uniquely defined up to a unitary equivalence

a′ = U+aU, a′+ = U+a+U (13.26)

with unitary U . The exact form of U will be determined later.
Let us now turn to the quantization of the free electromagnetic field. Its energy is given by

eq. (2.15) (making use of eq. (2.8)):

E =
∫

V

d3x

(
ε0
2

E2 +
1

2µ0
B2

)
=

∫
V

d3x

(
ε0
2

E2 +
c2κ2ε0

2
B2

)
. (13.27)

Here, we assume the fields to be restricted to a (possibly large) rectangular volume V = ABC
of edge lengths A, B, and C. Expressing B and E by the potentials A and φ according to
eq. (2.18) and inserting the Coulomb gauge condition

∇ · A = 0, φ = 0 (13.28)

on the potentials, we obtain

E =
∫

V

d3x [12ε0κ
2Ȧ

2
+ 1

2c2κ2ε0(∇ × A)2]. (13.29)

Now

(∇ × A)2 = ∇iAj∇iAj −∇iAj∇jAi

= ∇i(Aj∇iAj − Aj∇jAi) − Aj∆Aj + Aj∇j∇iAi

= −Aj∆Aj + ∇i(Aj∇iAj − Aj∇jAi).

Hence, by partial integration,

E =
∫

V

d3x ( 1
2ε0κ

2Ȧ
2 − 1

2c2κ2ε0 A · ∆A). (13.30)

Choosing a complete orthogonal system of eigenfunctions ul(x) of the non-negative operator
−∆ with

∆ul = −k2
l ul,

∫
V

u∗
l · um d3x = δlm

(depending on the boundary conditions on ∂V ) we have

A(t, x) =
∑

l

ql(t)ul(x),

Ȧ(t, x) =
∑

l

q̇l(t)ul(x),
(13.31)
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and

E =
∑

l

( 1
2ε0κ

2q̇2
l + 1

2ε0κ
2ω2

l q2
l ) (13.32)

with the frequency ωl = klc.
The quantization is now straightforward. The Hamiltonian is

Ĥ =
∑

l

(
1

2ε0κ2
P 2

l +
ε0κ

2ω2
l

2
Q2

l

)
. (13.33)

Notice that the electric field contributes to the kinetic energy and the magnetic field to the
potential energy.

Comparing with eq. (13.7) we immediately read off the annihilation and creation opera-
tors:

al =
1√
2

(√
ε0κ2ωl

�
Ql + i

√
1

ε0κ2ωl�
Pl

)
,

a+
l =

1√
2

(√
ε0κ2ωl

�
Ql − i

√
1

ε0κ2ωl�
Pl

)
,

(13.34)

in terms of which

Ĥ =
∑

l

�ωl(a+
l al + 1

2 ). (13.35)

Application of a+
l to an energy eigenstate |0〉 raises the energy by �ωl and corresponds to the

creation of an electromagnetic or light quantum of energy �ωl. It is natural to assume that
the ground state |0〉 with no light quanta has energy zero. Hence, we replace Ĥ by the final
Hamiltonian

H =
∑

l

�ωla
+
l al (13.36)

of the electromagnetic field.
The operators of eq. (13.34) refer to the Schrödinger picture in quantum mechanics, where

the time dependence resides in the states. In field theory, it is more common to work in the
Heisenberg pictures, where states are time-independent and operators time-dependent. The
relationship between Heisenberg and Schrödinger picture operators is given by

AH(t) = e(i/�)HtA e−(i/�)Ht, (13.37)

and with eq. (13.36) this gives

al(t) = al e−iωlt, a+
l (t) = a+

l eiωlt. (13.38)
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The quantum vector potential is given by the operator

AH(t, x) =
∑

l

√
�

ε0κ2ωl

[al e−iωltul(x) + a+
l e+iωltu∗

l (x)]√
2

= A(+) + A(−). (13.39)

The annihilation and creation parts A(±) are Hermitian conjugates of each other.
One easily derives the field operators for the electric and magnetic fields. For example,

EH(t, x) =
∑

l

i
√

�ωl

ε0

[alul(x) e−iωlt − a+
l u∗

l (x) eiωlt]√
2

= E(+) + E(−). (13.40)

The operators A(+)(t, x) and E(+)(t, x) annihilate a photon localized at the point x, whereas
A(−)(t, x) and E(−)(t, x) create a photon at the point x.

The quadratures

X1l =
1√
2
(al + a+

l ), X2l =
1

i
√

2
(al − a+

l )

play an important role in quantum optics.
To finish this section, we give examples of the precise form of the basis functions ul(x).

For periodic boundary conditions we have

ul(x) = εl
eikl·x
√

ABC
(13.41)

with

kl =
(

2πl1
A

,
2πl2
B

,
2πl3
C

)
, l1, l2, l3 ∈ Z

and εl · kl = 0. The εl contains polarization information. For a basis we need two orthogonal
vectors εl. Periodic boundary conditions correspond to running waves: a photon has energy
�ωl and momentum �kl.

For standing waves, we can take

ul(x) =

√
8

ABC


ε
(l)
1 sin(k(l)

1 x1) cos(k(l)
2 x2) cos(k(l)

3 x3)

ε
(l)
2 cos(k(l)

1 x1) sin(k(l)
2 x2) cos(k(l)

3 x3)

ε
(l)
3 cos(k(l)

1 x1) cos(k(l)
2 x2) sin(k(l)

3 x3)

 (13.42)

with

kl = (k(l)
1 , k

(l)
2 , k

(l)
3 ) =

(
πl1
A

,
πl2
B

,
πl3
C

)
and kl · εl = 0. This time, the sign of the momentum of one light quantum is undetermined.
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In quantum mechanics, there are no privileged harmonic oscillators, and one pair of cre-
ation and annihilation operators is as good as any other.

For a quantized electromagnetic field, on the other hand, the above set of creation and
annihilation operators is physically distinguished. Nevertheless, Bogolyubov transformations
play an important role in connection with so-called squeezed states, which will be defined in
the next section.

In quantum optics, quite often a considerable simplification applies for the electromagnetic
field, because only a finite, small number of modes contributes.

13.2 Coherent and squeezed states

In the previous section, we mentioned that the inhomogeneous linear transformations, which
preserve the Hermiticity properties and the commutation laws of the creation and annihilation
operators and of the quadratures, can be realized by unitary transformations. We now give
explicit expressions for these unitary transformations.

• We start with translations (Galilean transformations). For α ∈ C we define a unitary
operator

D(α) = eαa+−α∗a. (13.43)

We readily see that

D+(α)aD(α) = a + α, D+(α)a+D(α) = a+ + α∗. (13.44)

(For a proof, we replace α by αt, differentiate with respect to t, and observe that both
sides of eq. (13.44) solve the same linear differential equation and coincide for t = 0.)

For the quadratures we find

D+(α)X1D(α) = X1 +
α + α∗
√

2
, D+(α)X2D(α) = X2 +

α − α∗

i
√

2
. (13.45)

Using the well-known identity

eA eB = eA+B e
1
2 [A,B], (13.46)

which holds whenever the commutator [A, B] commutes with A and B, we can write
D(α) also as

D(α) = e−
1
2 |α|2eαa+

e−α∗a. (13.47)

• We now turn to rotations. For the unitary operator

R(θ) = e−iθa+a (θ ∈ R) (13.48)

we find

R+(θ)aR(θ) = a e−iθ, R+(θ)a+R(θ) = a+ eiθ, (13.49)
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and, hence,

R+(θ)X1R(θ) = X1 cos θ + X2 sin θ =
1√
2
(a e−iθ + a+ eiθ),

R+(θ)X2R(θ) = −X1 sin θ + X2 cos θ =
1

i
√

2
(a e−iθ − a+ eiθ).

(13.50)

The time evolution operator

U(t) = e−iωa+at = e−(i/�)Ht (13.51)

is, of course, a phase space rotation operator with θ = ωt.

• Finally, we consider Bogolyubov transformations. For r ∈ R we define the unitary oper-
ator

B(r) = e
1
2 ir(X1X2+X2X1) (13.52)

and obtain

B+(r)X1B(r) = X1 e−r, B+(r)X2B(r) = X2 er (13.53)

or

B+(r)aB(r) = a cosh r − a+ sinh r,

B+(r)a+B(r) = a+ cosh r − a sinh r.
(13.54)

Written in terms of a and a+, the operator B(r) assumes the form

B(r) = e
1
2 r[a2−(a+)2]. (13.55)

A slight generalization of eq. (13.55) is the so-called squeezing operator:

S(ξ) = e
1
2 [ξ∗a2−ξ(a+)2] with ξ ∈ C. (13.56)

For ξ = r eiθ, we infer from eq. (13.49) that

S(ξ) = R+(θ/2)B(r)R(θ/2) (13.57)

and

S+(ξ)aS(ξ) = a cosh r − a+ eiθ sinh r,

S+(ξ)a+S(ξ) = a+ cosh r − a e−iθ sinh r.
(13.58)

Coherent states are of utmost importance in quantum optics. For α ∈ C we define the normal-
ized coherent state (with respect to the pair a and a+) by

|α〉 = D(α)|0〉, (13.59)
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with D(α) from eq. (13.43). This means that |α〉 is just a Galilean-transformed ground state.
Of course, |α〉 = D(α)|0〉 is annihilated by the transformed annihilation operator a′:

a′ = D(α)aD+(α) = a − α,

(a − α)|α〉 = D(α)aD+(α)D(α)|0〉 = D(α)a|0〉 = 0.

In other words,

a|α〉 = α|α〉, (13.60)

and |α〉 is an eigenstate of the annihilation operator a with eigenvalue α. (We notice that the
spectrum of a is the whole complex plane, whereas a+ has no eigenstates at all.)

With eq. (13.47) we can write |α〉 in the equivalent form:

|α〉 = e−
1
2 |α|2eαa+ |0〉

= e−
1
2 |α|2

∞∑
n=0

αn(a+)n

n!
|0〉

= e−
1
2 |α|2

∞∑
n=0

αn

√
n!
|n〉 (13.61)

(see eq. (13.17)). Hence,

〈n|α〉 = e−
1
2 |α|2 αn

√
n!

, (13.62)

and the probability of finding n photons in a given state |α〉 equals

wn =
|α|2n

n!
e−|α|2 . (13.63)

This means that in a coherent state |α〉 the photon number is Poisson distributed with mean
value and variance, respectively,

〈n〉 = |α|2, σn = |α|. (13.64)

For α �= β the coherent states |α〉 and |β〉 are not orthogonal. Instead, with eq. (13.61),
we find

〈β|α〉 = e−
1
2 (|α|2+|β|2)〈0|eβ∗a eαa+ |0〉 (13.65)

and, using eq. (13.60),

〈β|α〉 = e−
1
2 (|α|2+|β|2)+β∗α = e−

1
2 (|α|2+|β|2−β∗α−α∗β−β∗α+α∗β). (13.66)

Thus

〈β|α〉 = e−
1
2 |α−β|2+ 1

2 (β∗α−α∗β) (13.67)
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and

|〈β|α〉|2 = e−|α−β|2 . (13.68)

The overlap of |α〉 and |β〉 decreases exponentially with |α − β|2.
Further useful consequences of eq. (13.61) are the following identities:

a+|α〉 = e−
1
2 |α|2 ∂

∂α
e+ 1

2 |α|2 |α〉 =
(

∂

∂α
+

α∗

2

)
|α〉, (13.69)

|n〉 =
1√
n!

(
∂

∂α
+

α∗

2

)n

|α〉
∣∣∣∣
α=0

, (13.70)

and

〈m|C|n〉 =
1√

m!
√

n!
e−|α|2 ∂m

∂α∗m

∂n

∂αn
e|α|2〈α|C|α〉

∣∣∣∣
α=0

. (13.71)

The set of {|α〉} of all coherent states is over-complete in the Hilbert space H. One finds

1
π

∫
d2α |α〉〈α| = 1,

|ψ〉 =
1
π

∫
d2α |α〉〈α|ψ〉, (13.72)

〈φ|ψ〉 =
1
π

∫
d2α 〈φ|α〉〈α|ψ〉,

where d2α = dαR dαI, with αR and αI being the real and imaginary parts of α, respectively.
The identity

|β〉 =
1
π

∫
d2α |α〉〈α|β〉 =

1
π

∫
d2α |α〉 e−

1
2 |α−β|2+ 1

2 (α∗β−αβ∗) (13.73)

reveals that the coherent states are not linearly independent.
For a proof of the important identity (13.72), we show that for normalized eigenstates |m〉

and |n〉 of a+a we have

1
π

∫
d2α 〈m|α〉〈α|n〉 = δmn. (13.74)

Indeed, according to eq. (13.62), we have

1
π

∫
d2α 〈m|α〉〈α|n〉 =

1
π

∫
d2α

(α∗)nαm

√
m!

√
n!

e−|α|2 , (13.75)

and this integral is easily evaluated, e.g. using polar coordinates in the αR vs. αI plane, to
yield δmn.

We also mention a useful formula for the trace of an operator A:

TrA =
1
π

∫
d2α 〈α|A|α〉. (13.76)
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For a proof we calculate

TrA =
∑

n

〈n|A|n〉 =
∑

n

1
π

∫
d2α 〈n|A|α〉〈α|n〉

=
1
π

∫
d2α

∑
n

〈α|n〉〈n|A|α〉 =
1
π

∫
d2α 〈α|A|α〉.

Coherent states remain coherent under time evolution with the operator U(t). From eq. (13.51)
we get

U(t)|α〉 = e−|α|2U(t) eαa+
U+(t)|0〉

= e−|α|2eαa+e−iωt |0〉.
Thus,

e−iωa+at|α〉 = |α e−iωt〉. (13.77)

Coherent states are the ground states of a translated oscillator. A translation of the oscilla-
tor potential can be achieved by adding a linear term:

V =
D

2
q2 − Eq =

D

2

(
q − E

D

)2

− E2

2D
.

Thus, a coherent state of a harmonic oscillator can be prepared by starting from the ground
state of an untranslated harmonic oscillator, then adiabatically switching on a linear term such
that one always stays in the ground state of the varying Hamiltonian and then suddenly switch-
ing off the linear term.

From eq. (13.59) it is also clear that coherent states should be generated by any interaction
Hamiltonian linear in a and a+ or X1 and X2. Indeed, a time-dependent classical current
distribution J(t, x) interacting with the electromagnetic field via the interaction Hamiltonian

HI =
∫

d3x J(t, x) · A(t, x)

will radiate off an electromagnetic field in a coherent state. In practice, coherent states of the
electromagnetic field are produced by a laser working well above threshold.

Squeezed states are just coherent states constructed with the squeezed annihilation and
creation operators:

aξ = S(ξ)aS+(ξ), a+
ξ = S(ξ)a+S+(ξ), (13.78)

with the squeezing operator S(ξ) as defined in eq. (13.56). The squeezed vacuum state

|0, ξ〉 = S(ξ)|0〉 (13.79)

is annihilated by aξ:

aξ|0, ξ〉 = 0. (13.80)
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With

Dξ(α) = eαa+
ξ −α∗aξ = S(ξ)D(α)S+(ξ), (13.81)

the normalized squeezed state |α, ξ〉 is defined by

|α, ξ〉 = Dξ(α)|0, ξ〉. (13.82)

A simple calculation yields

|α, ξ〉 = S(ξ)D(α)S+(ξ)S(ξ)|0〉 = S(ξ)D(α)|0〉 = S(ξ)|α〉.
Hence,

|α, ξ〉 = S(ξ)|α〉, (13.83)

and squeezed states are obtained from coherent states simply by applying the squeezing oper-
ator S(ξ).

Obviously, the overlap relations (13.67) and the completeness condition (13.72) are also
valid for squeezed states for a fixed squeezing parameter ξ. The time evolution as described
by U = e−iωa+a for the squeezing operator S(ξ) yields

U(t)S(ξ)U+(t) = S(ξ e−2iωt). (13.84)

Thus, squeezed states remain squeezed states under time evolution:

U(t)|α, ξ〉 = |α e−iωt, ξ e−2iωt〉. (13.85)

The squeezing parameters will change with time.
The photon number distribution

wn,α,ξ = |〈n|α, ξ〉|2 (13.86)

is a complicated and rapidly varying function of n. For instance, it is immediately clear from
eq. (13.79) that

wn,0,ξ = |〈n|0, ξ〉|2 (13.87)

vanishes for odd n.
Squeezed states are oscillator eigenstates for translated oscillators with modified stiffness.

Starting from the ground state of an unperturbed harmonic oscillator, they can be created by
first adiabatically switching on and then suddenly switching off a perturbation term in the
Hamiltonian, which is quadratic in a and a+ or X1 and X2. Quadratic interaction Hamiltoni-
ans should generally give rise to squeezed states. In practice, squeezed states are manufactured
in a routine way by nonlinear optical devices that produce photon pairs.

We conclude this section with the important discussion of uncertainty relations for the
quadratures X1 and X2. Let us define

〈Xi〉ρ = Tr Xiρ (i = 1, 2) (13.88)



13.2 Coherent and squeezed states 257

to be the expectation values of the quadratures in any (pure or mixed) quantum state ρ. With

∆Xi = Xi − 〈Xi〉ρ, (13.89)

we can define the uncertainties of the quadratures by the variances

σ2
Xiρ = 〈(∆Xi)2〉ρ. (13.90)

We have the uncertainty relation

σX1ρσX2ρ ≥ 1
2 . (13.91)

For instance, for the oscillator states |n〉 we calculate

〈X1〉n =
〈

n

∣∣∣∣a + a+

√
2

∣∣∣∣ n

〉
=

1√
2
〈n|n − 1〉√n +

1√
2
〈n|n + 1〉√n + 1 = 0

and likewise for 〈X2〉n = 0. Then

σ2
X1n = 〈n|X2

1 |n〉 = 〈n|12 (a + a+)2|n〉
= 1

2 〈n|[a2 + (a+)2 + aa+ + a+a]|n〉 = 1
2 〈n|(1 + 2a+a)|n〉 = n + 1

2 .

Likewise

σX2n = σX1n =
√

n + 1
2 (13.92)

σX1nσX2n = n + 1
2 .

We see that the uncertainties are equal and that the uncertainty relation is saturated with an
equality sign for the ground state n = 0.

This symmetric saturation also holds for coherent states, which, after all, are only trans-
lated ground states:

σ2
Xiα = 〈α|(∆Xi)2|α〉 = 〈0|D+(α)(∆Xi)2D(α)|0〉

= 〈0|X2
i |0〉 = σXi0 = 1/

√
2. (13.93)

Conversely, let us investigate under what circumstances the uncertainty relation (13.91) is
saturated. Starting from any state with density matrix

ρ =
∑

i

wi|ψi〉〈ψi|, (13.94)

we form

0 ≤
〈(

∆X1

σX1ρ
− i

∆X2

σX2ρ

) (
∆X1

σX1ρ
+ i

∆X2

σX2ρ

)〉
ρ

=
∑

i

wi

〈
ψi

∣∣∣∣(∆X1

σX1ρ
− i

∆X2

σX2ρ

) (
∆X1

σX1ρ
+ i

∆X2

σX2ρ

)∣∣∣∣ ψi

〉

=

〈
(∆X1)2

σ2
X1ρ

+
(∆X2)2

σ2
X2ρ

+ i
[
∆X1

σX1ρ
,

∆X2

σX2ρ

]〉
ρ

= 2 − 1
σX1ρσX2ρ

.
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Equality σX1ρσX2ρ = 1
2 can only hold if ρ = |ψ〉〈ψ| is pure and if |ψ〉 is the unique state

satisfying(
∆X1

σX1ρ
+ 2i∆X2σX1ρ

)
|ψ〉 = 0. (13.95)

This means that |ψ〉 has to be the ground state with respect to the pair

a′′ =
1√
2

(
∆X1

σX1ρ

√
2

+ i∆X2σX1ρ

√
2

)
,

a′′+ =
1√
2

(
∆X1

σX1ρ

√
2
− i∆X2σX1ρ

√
2

)
,

or, equivalently, a coherent state with respect to the pair

a′ =
1√
2

(
X1

σX1ρ

√
2

+ iX2σX1ρ

√
2

)
,

a′+ =
1√
2

(
X1

σX1ρ

√
2
− iX2σX1ρ

√
2

)
.

Summarizing our results, we see that the uncertainty relation for X1 and X2 is saturated if and
only if ρ is a pure state which is either a coherent state or a squeezed state generated by a pure
Bogolyubov transformation. One readily evaluates

σ2
X1,2αr = 〈α, r|[X1,2 − 〈α, r|X1,2|α, r〉]2|α, r〉

= 〈α|B+(r)[X1,2 − 〈α, r|X1,2|α, r〉]2B(r)|α〉
= 〈α|[X1,2e∓r − 〈α, r|X1,2|α, r〉]2|α〉
= 〈α|[X1,2e∓r − 〈α|B+(r)X1,2B(r)|α〉]2|α〉
= e∓2r〈α|[X1,2 − 〈α|X1,2|α〉]2|α〉
= e∓2rσ2

X1,2α = 1
2e∓2r.

Hence,

σX1αr =
1√
2

e−r and σX2αr =
1√
2

er. (13.96)

The saturation of the uncertainty relation for X1 and X2 is symmetric, with σX1 = σX2 =
1/
√

2, exactly for coherent states. Equation (13.96) justifies the name “squeezed states”.
For more general squeezed states with complex squeezing parameters, an additional rota-

tion is involved. In this case, the uncertainty relation is not saturated for X1 and X2, but for
the rotated quadratures

X1(φ) = X1 cos φ − X2 sin φ and X2(φ) = X1 sin φ + X2 cos φ

with suitable rotation angle φ.
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In summary, coherent and squeezed states are exactly those states which are as close as
possible to classical states, because they have minimal uncertainties.

One can visualize the situation by a plot (fig. 13.1), in which for a given state ρ the ex-
pectation values 〈X1,2〉ρ are plotted and the uncertainty is indicated by an uncertainty area of
minimal measure ≥ π/4. For coherent states the area is minimal and circular, for Bogolyubov-
transformed states the area is minimal and elliptic with axes parallel to the main axes, and for
a general squeezed state one has minimal rotated elliptical areas.

Figure 13.1: (a) Uncertainties for the quadratures in an arbitrary state. (b) Uncertainties for the
quadratures in coherent and squeezed states.

One notices that the uncertainty relation for X1 and X2 gives rise to an uncertainty relation
for the amplitude and the phase of a = (1/

√
2)(X1 + iX2) and, hence, of a light wave. By

choosing a suitably squeezed state one can reduce the uncertainty of either amplitude or phase,
taking into account an increased uncertainty of the conjugated quantity.

13.3 Operators, ordering procedures and star products

All operators acting on states of the electromagnetic field are functions of the creation and
annihilation operators a+

l and al or, alternatively, of the quadrature operators Xl1 and Xl2.
Quantization is a procedure that associates operators f(a, a+) to classical functions f(α, α+).
For functions like f(α, α∗) = α2α∗2 ordering problems arise. Should one define f(a, a+) by
a2a+2 or aa+aa+ or 1

2 (a2a+2 + a+2a2) or otherwise? It is desirable to adopt an ordering
procedure that associates to every function f(α, α∗) a unique operator (Op f)(a, a+) such
that

Op(c1f1 + c2f2) = c1 Op f1 + c2 Op f2 and Op 1 = 1. (13.97)

Using a Fourier representation

f(α, α∗) =
1
π

∫
d2β eβα∗−β∗αf̃(β, β∗), (13.98)

or, with α = (1/
√

2)(x1 + ix2) and β = (1/
√

2)(y1 + iy2),

f(x1, x2) =
1
2π

∫
d2y ei(x1y2−x2y1)f̃(y1, y2), (13.99)
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we see that it suffices to define Op f for the exponential functions

fββ∗(α, α∗) := e(βα∗−β∗α), fy1y2(x1, x2) := ei(x1y2−y1x2). (13.100)

For polynomial functions p, Op p is then obtained by differentiating Op fββ∗ with respect to
β and β∗, and for more general functions f one can use eq. (13.97) to define Op f .

Let us now list five frequently used ordering procedures:

1. Normal ordering

OpN fββ∗ = eβa+
e−β∗a. (13.101)

All creation operators are placed to the left of all annihilation operators. For instance,
OpN(α2α∗2) = a+2a2.

The expectation value between coherent states is easily found to be

〈α|OpN f |α〉 = f(α, α∗). (13.102)

In particular,

〈0|OpN f |0〉 = f(0, 0).

2. Anti-normal ordering

OpA fββ∗ = e−β∗a eβa+
. (13.103)

This time, all creation operators are placed to the right.

For this ordering, one finds from eq. (13.97) and the completeness relation (eq. (13.72))
for coherent states

OpA f =
1
π2

∫
d2β d2α e−β∗a|α〉〈α|eβa+

f̃(β, β∗)

=
1
π2

∫
d2β d2α e−β∗α+βα∗

f̃(β, β∗)|α〉〈α| (13.104)

=
1
π

∫
d2α |α〉f(α, α∗)〈α|.

3. Standard ordering

OpS fy1y2 = eiy2X1 e−iy1X2 . (13.105)

All operators X2 are placed to the right of all operators X1. This procedure is most
common if X2 is the differential operator X2 = −i d/dx and X1 is multiplication by x1.
Then OpS f is a differential operator with all derivative operators placed to the right.

4. Anti-standard ordering

OpAS fy1y2 = e−iy1X2 e+iy2X1 . (13.106)
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5. Weyl ordering

OpW fββ∗ = eβa+−β∗a = D(β), (13.107)

This is a very important ordering procedure, where D(β) is the translation operator of
eq. (13.43). Equivalently, we have

OpW fy1y2 = ei(y2X1−y1X2). (13.108)

The Weyl ordering corresponds to a complete symmetrization over all orderings in which
polynomials in a and a+ can be written. For example

OpW(αα∗) = 1
2 (aa+ + a+a)

and

OpW(α2α∗2) = 1
6 (a2a+2 + aa+aa+ + aa+2a + a+a2a+ + a+aa+a + a+2a2).

For real functions f , OpN f , OpA f , and OpW f are Hermitian. This is in general not true for
OpS f and OpAS f .

For f �= g we have OpX f �= OpX g; hence OpX has an inverse, and a non-commutative
but associative so-called star product ∗X can be defined by

f ∗X g = Op−1
X (OpX f OpX g). (13.109)

From eq. (13.97) we see that the star product is linear in its factors and that
1 ∗X f = f ∗X 1 = f . Different ordering procedures give different but related star products.
Indeed,

f ∗X g = S−1
XY ((SXY f) ∗Y (SXY g)), (13.110)

where

SXY f = Op−1
Y OpX(f).

Due to eq. (13.98), star products are already completely determined once we know fββ∗ ∗X
fγγ∗ , with fββ∗ and fγγ∗ given by eq. (13.100). For instance,

fββ∗ ∗N fγγ∗ = Op−1
N (eβa+

e−β∗a eγa+
e−γ∗a)

= Op−1
N (e(β+γ)a+

e−(β∗+γ∗)a e−β∗γ)

= e−β∗γ e(β+γ)α∗−(β∗+γ∗)α

= fββ∗ exp

( ←−
∂

∂α

−→
∂

∂α∗

)
fγγ∗ . (13.111)

Here the arrows over ∂/∂α and ∂/∂α∗ indicate that ∂/∂α∗ acts to the right on fγγ∗ and ∂/∂α
acts to the left on fββ∗ . So, quite generally, we obtain

f ∗N g = f exp

( ←−
∂

∂α

−→
∂

∂α∗

)
g
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and, analogously,

f ∗A g = f exp

(
−

←−
∂

∂α∗

−→
∂

∂α

)
g,

f ∗S g = f exp

(
−i

←−
∂

∂x2

−→
∂

∂x1

)
g, (13.112)

f ∗AS g = f exp

(
i
←−
∂

∂x1

−→
∂

∂x2

)
g,

f ∗W g = f exp

[
1
2

( ←−
∂

∂α

−→
∂

∂α∗ −
←−
∂

∂α∗

−→
∂

∂α

)]
g

= f exp

[
i
2

( ←−
∂

∂x1

−→
∂

∂x2
−

←−
∂

∂x2

−→
∂

∂x1

)]
g. (13.113)

The Hermiticity property

(f ∗X g)∗ = g∗ ∗X f∗ (13.114)

holds for X = N, A, W, but not for X = S, AS.
OpX and ∗X are invariant under phase space rotations (eq. (13.24)), for X = N, A, W, and

invariant under Bogolyubov transformations for X = S, AS, W. Hence, also in this respect
OpW and ∗W represent the most symmetric case.

The non-commutativity of the star product comes from the non-commutativity of Op f
and Op g, which is regulated by Planck’s constant �. In our treatment we have scaled out � in
order to have simple commutators [a, a+] = 1, [X1, X2] = i1.

The � dependence can be visualized by replacing everywhere

a → a√
�
, a+ → a+

√
�
, X1,2 → X1,2√

�
, α → α√

�
, α∗ → α∗

√
�
. (13.115)

The � will reappear in our formulas. The star product ∗W will look like

f ∗W g = f exp

[
i�
2

( ←−
∂

∂x1

−→
∂

∂x2
−

←−
∂

∂x2

−→
∂

∂x1

)]
g. (13.116)

In lowest non-trivial order in �, the commutator will be given by the Poisson bracket

f ∗W g − g ∗W f = i�{f, g} + O(�2), (13.117)

where O(�2) indicates terms of higher order in �. The same property is true for the other star
products:

f ∗X g − g ∗X f = i�{f, g} + O(�2). (13.118)

For an operator A that is already ordered according to the ordering procedure X , one im-
mediately reads off the inverse fA = Op−1

X A. A problem arises if A is not properly ordered.



13.3 Operators, ordering procedures and star products 263

In general, Op−1
X A can be obtained in the following way. The starting point is the fundamental

identity:

1
π

Tr(D+(β)D(α)) = δ(2)(α − β) (13.119)

or

1
2π

Tr(e−i(X1y2−X2y1) ei(X1x2−X2x1)) = δ(x1 − y1)δ(x2 − y2), (13.120)

which can be verified by direct calculation with eq. (13.76). Then, every operator A can be
represented in the form

A =
1
π

∫
d2β D(β) Tr(D+(β)A)

=
1
π

∫
d2β eβa+−β∗a Tr(e−βa++β∗aA) (Weyl). (13.121)

This gives A in Weyl ordered form. Reordering eβa+−β∗a we also find

A =
1
π

∫
d2β e+βa+

e−β∗a Tr(e+β∗a e−βa+
A) (normal)

=
1
π

∫
d2β e−β∗a eβa+

Tr(e−βa+
eβ∗aA) (anti-normal)

=
1
2π

∫
d2y ei(X1y2−X2y1) Tr(e−i(X1y2−X2y1)A) (13.122)

=
1
2π

∫
d2y eiX1y2 e−iX2y1) Tr(e+iX2y1 e−iX1y2A) (standard)

=
1
2π

∫
d2y e−iX2y1 eiX1y2) Tr(e−iX1y2 eiX2y1A) (anti-standard).

From eqs. (13.121) and (13.122) we immediately read off the inverses Op−1
X (A):

Op−1
W (A) = WA(α, α∗) =

1
π

∫
d2β eβα∗−β∗α Tr(e−βa++β∗aA)

= WA(x1, x2) =
1
2π

∫
d2y ei(x1y2−x2y1) Tr(e−i(X1y2−X2y1)A)

Op−1
N (A) = QA(α, α∗) =

1
π

∫
d2β eβα∗−β∗α Tr(eβ∗a e−βa+

A) (13.123)

Op−1
A (A) = PA(α, α∗) =

1
π

∫
d2β eβα∗−β∗α Tr(e−βa+

eβ∗aA)

Op−1
S (A) = qA(x1, x2) =

1
2π

∫
d2y ei(x1y2−x2y1) Tr(eiX2y1 e−iX1y2A)

Op−1
AS(A) = pA(x1, x2) =

1
2π

∫
d2y ei(x1y2−x2y1) Tr(e−iX1y2 eiX2y1A).

In the above equations, WA is called the Wigner function of the operator A. It plays a fun-
damental role in quantum optics and quantum mechanics. Almost equally important are the
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so-called P and Q functions PA and QA. From eqs. (13.102), (13.104), and (13.122) we see

QA(α, α∗) = 〈α|A|α〉 (13.124)

and

A =
1
π

∫
d2α |α〉PA〈α|. (13.125)

For positive A, QA is also positive. This is in general not true for the other functions in
eq. (13.123). Equation (13.124) reflects the remarkable fact that, due to the over-completeness
of coherent states, an operator A is already determined by its diagonal elements 〈α|A|α〉.

By definition of the star product, eq. (13.109), Op−1
X (AB) is given by star products:

WAB = WA ∗W WB, QAB = QA ∗N QB , (13.126)

PAB = PA ∗A PB, pAB = pA ∗AS pB, qAB = qA ∗A qB .

[The symbol σH of a differential operator H introduced at the beginning of section 9.1 and
in section 10.10 should just be identified with qS = Q−1

S (H) = σH , and we have σAB =
σA ∗S σB , and σ[A,B] = (1/ik){σA, σB} corresponds to eq. (13.118).]

Reordering the exponentials under the traces in eq. (13.123), we can observe how the
different functions WA, PA, QA, pA, and qA are related to each other:

W̃ (β, β∗) = e
1
2 |β|2Q̃(β, β∗), P̃A(β, β∗) = e|β|

2
Q̃(β, β∗), (13.127)

and, hence,

QA = e
1
2 SWA, PA = e−

1
2 SWA, (13.128)

with the operator S = ∂2/∂α ∂α∗. Similarly,

qA = exp
(
− i

2
∂2

∂x1 ∂x2

)
WA, pA = exp

(
i
2

∂2

∂x1 ∂x2

)
WA. (13.129)

From this we derive interesting and important identities for the trace of operators:

TrA =
1
π

∫
d2α 〈α|A|α〉 =

1
π

∫
d2α QA(α, α∗)

=
1
π

∫
d2α e

1
2 SWA(α, α∗) =

1
π

∫
d2α eSPA(α, α∗) (13.130)

=
1
π

∫
d2α WA(α, α∗) =

1
π

∫
d2α PA(α, α∗),

where the last line follows because all the derivatives in S integrate out. Likewise,

TrA =
1
2π

∫
d2x WA(x1, x2) (13.131)

=
1
2π

∫
d2x pA(x1, x2) =

1
2π

∫
d2x qA(x1, x2).



13.3 Operators, ordering procedures and star products 265

Moreover,

TrAB =
1
π

∫
d2α WAB =

1
π

∫
d2α WA ∗W WB =

1
π

∫
d2α WAWB, (13.132)

because the derivatives in the star product integrate out, and

TrAB =
1
π

∫
d2α WAWB =

1
π

∫
d2α e−

1
2 SQA e−

1
2 SQB (13.133)

=
1
π

∫
d2α (e−SQA)QB =

1
π

∫
d2α PAQB =

1
π

∫
d2α QAPB.

Similarly,

TrAB =
1
2π

∫
d2x WAWB =

1
2π

∫
d2x qApB =

1
2π

∫
d2x pAqB . (13.134)

Equations (13.133) and (13.134) also follow from eqs. (13.121) and (13.122).
Far beyond quantum optics, the theory of star products is a rapidly developing branch

of mathematical physics and differential geometry. We defined star products on the simplest
phase spaces P = R

2 and P = R
2n. More generally, star products can be defined on so-called

Poisson manifolds P , whose defining property is the existence of a bilinear Poisson bracket
{f, g} for any smooth complex-valued functions f, g : P → C on P : f, g ∈ C∞(P ), with the
usual properties of Poisson brackets:

(i) {f, g} + {g, f} = 0,

(ii) {f, gh} = {f, g}h + g{f, h},
(iii) {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0. (13.135)

Symplectic manifolds as defined in chapter 9 are special Poisson manifolds.
In order to avoid convergence problems in expressions like eq. (13.116), one goes over to

formal power series in an indeterminate λ (eventually meant to be replaced by �). Let

f(p) =
∞∑

n=0

fn(p)λn (13.136)

be a formal power series in λ with coefficients in C∞(P ). We denote the set of all such formal
power series by C∞(P )[[λ]]. Then a star product on a Poisson manifold P is a (bilinear)
associative product

∗ : C∞(P )[[λ]] × C∞(P )[[λ]] → C∞(P )[[λ]]

(f, g) → f ∗ g =
∞∑

n=0

λnMn(f, g), (13.137)

with the following properties:

(i) M0(f, g) = fg, i.e. f ∗ g = fg[1 + O(λ)],
(ii) M1(f, g) − M1(g, f) = i{f, g}, i.e. f ∗ g − g ∗ f = iλ{f, g}[1 + O(λ)],

(iii) 1 ∗ f = f ∗ 1 = f. (13.138)
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Normally, also the following locality property for the supports of f , g and f ∗ g is postulated:

(iv) supp f ∗ g ⊂ supp f ∩ supp g. (13.139)

A star product is called Hermitian if

(v) f ∗ g = g ∗ f. (13.140)

The star products defined in this section are all local, and ∗W, ∗N and ∗AS are Hermitian.

13.4 The Q, P , and Wigner functions of a density operator

Let the state of the system be described by a density operator

ρ =
∑

i

wi|ψi〉〈ψi|, ρ ≥ 0, Tr ρ = 1. (13.141)

The functions Qρ(α, α∗), Pρ(α, α∗), and Wρ(α, α∗) are often simply called the Q, P , and
Wigner functions of the system.

For a suitably ordered operator A = OpXf , the expectation value

〈A〉ρ = Tr ρA (13.142)

can be simply expressed by

〈OpNf〉ρ =
1
π

∫
d2α f(α, α∗)Pρ(α, α∗),

〈OpAf〉ρ =
1
π

∫
d2α f(α, α∗)Qρ(α, α∗), (13.143)

〈OpWf〉ρ =
1
π

∫
d2α f(α, α∗)Wρ(α, α∗).

These equations follow immediately from eqs. (13.132) and (13.133). For Qρ(α, α∗) we have
(eq. 13.124)

Qρ(α, α∗) = 〈α|ρ|α〉 ≥ 0,

1
π

∫
d2α Qρ(α, α∗) = 1, (13.144)

Qρ(α, α∗) =
∑

i

wi〈α|ψi〉〈ψi|α〉 ≤ 1.

We have already mentioned that positivity will in general only hold for Qρ, but not for Pρ and
Wρ. We shall soon see that |Wρ| is bounded but not |Pρ|. Let us calculate the functions Qρ,
Pρ, and Wρ for some typical and important density operators. We start with evaluating Qρ.

• Pure coherent state. From eq. (13.68) we immediately get (compare eq. (13.124))

Q|γ〉(α, α∗) = 〈α|γ〉〈γ|α〉 = e−|α−γ|2 . (13.145)

The result is a Gaussian function.
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Also for a squeezed state we would have found a Gaussian, but this time with different vari-
ances for α1 and α2.

• Pure number state. From eq. (13.71) or directly from eq. (13.70) we obtain for a pure
number state

Q|n〉(α, α∗) =
1
n!

e−|γ|2
(

∂2

∂γ ∂γ∗

)n

e|γ|
2
Q|γ〉(α, α∗)

∣∣∣∣
γ=γ∗=0

=
|α|2n

n!
e−|α|2 . (13.146)

• Thermal state. A thermal state is described by the density matrix

ρth =
1
Z

e−τa+a =
∑

n

wn|n〉〈n| (13.147)

with

τ =
�ω

kT
, Z = Tr e−τa+a =

1
1 − e−τ

, wn =
e−τn

Z
.

The expectation value 〈N〉 = Tr a+aρth is given by

〈N〉 = − ∂

∂τ
lnZ =

e−τ

1 − e−τ
. (13.148)

Expressing e−τ by 〈N〉 we can cast ρth into the form

ρth =
1

〈N〉 + 1

∞∑
n=0

( 〈N〉
〈N〉 + 1

)n

|n〉〈n|.

Now,

Qth(α, α∗) = 〈α|ρth|α〉 =
∑

n

wnQ|n〉(α, α∗)

=
1

〈N〉 + 1
exp

(
− |α|2
〈N〉 + 1

)
. (13.149)

It is now an easy task to compute also Wρ and Pρ for the same set of density states. From
eq. (13.127) we see that we can start out from the Fourier transform Q̃ρ(β, β∗), multiply by
e|β|

2/2 or e|β|
2

and then calculate the inverse Fourier transform. The result is as follows:

• Coherent state.

W|γ〉(α, α∗) = 2 e−2|α−γ|2 , P|γ〉(α, α∗) = πδ(2)(α − γ). (13.150)
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• Number state.

W|n〉(α, α∗) = 2
e−|γ|2

n!

(
∂2

∂γ ∂γ∗

)n

e+|γ|2 e−2|α−γ|2
∣∣∣∣
γ=γ∗=0

,

P|n〉(α, α∗) = π
e−|γ|2

n!

(
∂2

∂γ ∂γ∗

)n

e+|γ|2δ(2)(α − γ)
∣∣∣∣
γ=γ∗=0

.

(13.151)

• Thermal state.

Wth(α, α∗) =
1

〈N〉 + 1
2

exp
(
− |α|2
〈N〉 + 1

2

)
,

Pth(α, α∗) =
1

〈N〉 exp
(
−|α|2
〈N〉

)
.

(13.152)

One notices that the distribution Wρ is narrower than Qρ, and that Pρ is narrower than Wρ.
Let us visualize the dependence on � by introducing dimensional quantities α, α∗, and

X1,2 according to eq. (13.115). We define dimensional Q, P , and W functions by

Q(�)
ρ (α, α∗) =

1
�

Q

(
α√
�
,

α∗
√

�

)
,

W (�)
ρ (α, α∗) =

1
�

W

(
α√
�
,

α∗
√

�

)
, (13.153)

P (�)
ρ (α, α∗) =

1
�

P

(
α√
�
,

α∗
√

�

)
.

These functions are normalized to

1
π

∫
d2α Q(�)

ρ =
1
π

∫
d2α W (�)

ρ =
1
π

∫
d2α P (�)

ρ = 1, (13.154)

and eq. (13.144) turns into

0 ≤ Q(�)
ρ ≤ 1/�. (13.155)

For the Wigner function, we can use its invariance under Bogolyubov transformations and
employ also non-symmetric rescalings:

x1 → κx1, x2 → x2/κ�. (13.156)

The state ρ is said to have a classical limit ρcl if

lim
�→0

W (�)
ρ = lim

�→0
Q(�)

ρ = lim
�→0

P (�)
ρ = πρcl (13.157)

exists and if ρcl is a classical state, i.e. a non-negative distribution on phase space.
A glance at eqs. (13.145)–(13.152) reveals that ργ = |γ〉〈γ| has the classical pure state

ργ cl(α, α∗) = δ(2)(α − γ) (13.158)
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as a limit. Also ρth converges to the classical canonical distribution,

ρth cl =
ω

πkT
exp

(
−ω|α|2

kT

)
, (13.159)

whereas, not surprisingly, ρn = |n〉〈n| has no classical limit.
If the classical limit exists, the limit of the expectation values is given by the classical

expectation value:

lim
�→0

{Tr(ρ OpX f)} =
∫

d2α ρcl(α, α∗)f(α, α∗). (13.160)

Negative values of Wρ and Pρ are a quantum feature of these functions and will disappear in
the classical limit.

We now discuss the properties of the Wigner function Wρ(x1, x2) in some more detail,
this time in terms of the quadrature coordinates x1 and x2. Integrating

Wρ(x1, x2) =
1
2π

∫
d2y ei(x1y2−x2y1) Tr(e−i(X1y2−X2y1)ρ) (13.161)

over x2 we obtain a δ-function:∫
dx2 Wρ(x1, x2) =

∫
d2y eix1y2 δ(y1) Tr(e−i(X1y2−X2y1)ρ)

=
∫

dy2 eix1y2Tr(e−iX1y2ρ). (13.162)

Using eigenstates |x′
1〉 of X1 we can write

Tr(e−iX1y2ρ) =
∫

dx′
1〈x′

1| e−iX1y2ρ|x′
1〉 (13.163)

and rewrite eq. (13.162) as∫
dx2 Wρ(x1, x2) =

∫
dy2

∫
dx′

1 ei(x1−x′
1)y2 〈x′

1|ρ|x′
1〉

= 2π

∫
dx′

1 δ(x1 − x′
1)〈x′

1|ρ|x′
1〉

= 2π〈x1|ρ|x1〉 ≥ 0.

The result is just the probability distribution for the measured values of the quadrature X1, up
to a factor 2π. In the same way,∫

dx1 Wρ(x1, x2) = 2π〈x2|ρ|x2〉 ≥ 0. (13.164)

Although Wρ(x1, x2) is not a proper positive distribution function, its marginals are so.
The Wigner function is invariant under all squeezing transformations. For instance, we

could have based all our calculations on rotated quadratures. Thus, the probability distribution
for the rotated quadrature Xθ is obtained by integrating out the complementary variable:

2π〈xθ|ρ|xθ〉 =
∫

d2x δ(xθ − x1 cos θ + x2 sin θ) W (x1, x2). (13.165)
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Reordering e−i(X1y2−X2y1) in eq. (13.161), we derive another frequently used form of the
Wigner function:

W (x1, x2) =
1
2π

∫
d2y ei(x1y2−x2y1− 1

2 y1y2) Tr(e−iX1y2 eiX2y1ρ) (13.166)

=
1
2π

∫
d2y

∫
dx′

1 ei(x1y2−x2y1− 1
2 y1y2)〈x′

1| e−iX1y2 eiX2y1ρ|x′
1〉

=
1
2π

∫
d2y

∫
dx′

1 ei(x1y2−x2y1− 1
2 y1y2−x′

1y2)〈x′
1| eiX2y1ρ|x′

1〉.

Observing that eiX2y1 is a translation operator for X1, we can continue:

W (x1, x2) =
1
2π

∫
d2y

∫
dx′

1 ei(x1y2−x2y1− 1
2 y1y2−x′

1y2)〈x′
1 + y1|ρ|x′

1〉

=
∫

dy1

∫
dx′

1 δ(x1 − x′
1 − 1

2y1) e−ix2y1〈x′
1 + y1|ρ|x′

1〉

=
∫

dy1 e−ix2y1〈x1 + 1
2y1|ρ|x1 − 1

2y1〉. (13.167)

Notice how the quantum uncertainty relation between X1 and X2 reflects itself in a slight
smearing of 〈x1|ρ|x1〉 around the diagonal. From eq. (13.167) we can derive a bound for
W (x1, x2) using Schwartz’s inequality:

|W (x1, x2)| =

∣∣∣∣∣∑
i

∫
dy1 e−ix2y1wi〈x1 + 1

2y1|ψi〉〈ψi|x1 − 1
2y1〉

∣∣∣∣∣
≤

∑
i

wi

(
2

∫
dy1

2

∣∣∣∣〈x1 +
y1

2

∣∣∣∣ψi

〉∣∣∣∣2
)1/2

×
(

2
∫

dy1

2

∣∣∣∣〈ψi

∣∣∣∣x1 − y1

2

〉∣∣∣∣2
)1/2

≤ 2. (13.168)

So,

|W (x1, x2)| ≤ 2 and |W (�)(x1, x2)| ≤ 2/�. (13.169)

The equation of motion for the density operator is the quantum Liouville equation,

i�
d
dt

ρ = [Ĥ, ρ], (13.170)

where

Ĥ = OpWH (13.171)

is the Hamilton operator. For the Wigner function W
(�)
ρ , eq. (13.170) means simply

d
dt

W (�)
ρ =

1
i�

(H ∗W W (�)
ρ − W (�)

ρ ∗W H). (13.172)
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In lowest order in � this goes over into the classical Liouville equation,

d
dt

ρcl = {H, ρcl},

with the Poisson bracket on the right-hand side (compare eq. (13.118)).
For a stationary state ρ we have

[Ĥ, ρ] = 0, H ∗W W (�)
ρ − W (�)

ρ ∗W H = 0, {H, ρcl} = 0. (13.173)

This equation can be solved order by order in � using the short-wave asymptotic methods of
chapters 7–10, where the parameter k controlling the short-wave limit has to be replaced by
1/�.

The star product formalism yields considerable simplifications. For an energy eigenstate
ρ = |E〉〈E|, with Ĥ |E〉 = E|E〉, eq. (13.173) simplifies to

Ĥρ = Eρ, H ∗W W (�)
ρ = EW (�)

ρ . (13.174)

For a pure stationary state, the short-wave ansatz eq. (7.1) corresponds to a WKB ansatz for
the Wigner function:

W (�)
ρ = E(i/�)S ∗W C ∗W E−(i/�)S, (13.175)

where

E(i/�)S = 1 +
i
�
S +

1
2

(
i
�

)2

S ∗W S +
1
6

(
i
�

)3

S ∗W S ∗W S + . . .

=
∞∑

n=0

1
n!

(
i
�

)n

S∗Wn (13.176)

is the star-exponential function, which coincides with the normal exponential function if S
depends only on x1.

In lowest order, {H; ρcl} = 0 means that ρcl has to be constant along the classical solu-
tions of the equation of motion. If, in addition, the energy has a sharp value, ρcl is concentrated
on the orbits of energy E. For higher orders in �, this concentration will be somewhat soft-
ened, and Wρ will have appreciable values only in some small neighborhood of the region
{(x1, x2), H(x1, x2) = E} in classical phase space, where the possible values of E are given
by the Bohr–Sommerfeld quantization condition.

If the energy does not have a sharp value but is concentrated in a neighborhood of E, then,
again, Wρ will show the same concentration about the energy level surface corresponding to
the energy E.

For the canonical thermal density operator ρ = (1/Z) exp(−Ĥ/kT ), we have, of course,

Wρ =
1
Z

E−H/kT with Z =
1
2π

∫
d2x E−H/kT . (13.177)

The scalar product of two states |ϕ〉 and |ψ〉 is given by

|〈ϕ|ψ〉|2 = Tr(ρϕρψ) =
∫

d2x W|ϕ〉W|ψ〉. (13.178)
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The integrand is often concentrated on a small overlap region of the supports of W
(�)
|ϕ〉 and

W
(�)
|ψ〉 and the integral can be evaluated by the method of stationary phases described in chapter

8. For details, see the comprehensive and lucid presentation of Schleich, mentioned in the
literature list.



14 Detection of radiation fields

14.1 Beam splitters and homodyne detection

A beam splitter is a linear optical device by which an incident beam of light is partially trans-
mitted and partially reflected (see fig. 14.1).
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�
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�
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�
a

b

a′

b′

Figure 14.1: Principle of a beam splitter.

Usually, one considers two incident beams directed in such a way that their reflected and
transmitted rays can interfere. In the simplest and most important case, all four beams involved
are unimodal, i.e. each of them contains only one mode of the radiation field. (In the following
we shall assume that all of them have the same frequency.)

The beam splitter will now realize a linear transformation between the annihilation opera-
tors a and b of the incident modes and the corresponding operators a′ and b′ of the outgoing
modes:

a′ = t1a + r1b, b′ = t2b + r2a, (14.1)

and, hence,

a′+ = t∗1a
+ + r∗1b

+, b′+ = t∗2b + r∗2a. (14.2)

There are no Bogolyubov transformations involved, because we have assumed that the beam
splitter contains no nonlinear optical components.
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More generally, we can consider linear transformations

a′
i =

M1∑
r=1

arCri, (14.3)

a′+
j =

M1∑
s=1

a+
s C∗

sj =
M1∑
s=1

C+
jsa

+
s (i, j = 1, . . . , M2).

The commutation relation [a′
i, a

′+
j ] = δij leads to

(C+C)ij = δij , (14.4)

whereas energy conservation or, equivalently, photon number conservation,

M1∑
r=1

a+
r ar =

M2∑
i=1

a′+
i a′

1,

gives

(CC+)rs = δrs. (14.5)

Altogether this implies that C has to be a unitary square matrix and M1 = M2. Matrix C can
be implemented by a unitary transformation U of the Hilbert space U+arU =

∑
i aiCir, and

U leaves the vacuum invariant.
For the beam splitter, we must have M1 = M2 = 2 and we see that, even if there is only

one incident beam, we cannot neglect the second mode b in quantum optics. If only one beam
is incident, the second incoming state is the vacuum state of the mode b.

For the beam splitter, “unitarity” means

|t1|2 + |r1|2 = |t2|2 + |r2|2 = 1,

t1r
∗
2 + r1t

∗
2 = t1r

∗
1 + r2t

∗
2 = 0.

(14.6)

The precise values for the reflection and transmission coefficients depend on the physical
details of the beam splitter.

Redefining the phases of the four modes a, b, a′, and b′ changes the phases of the coeffi-
cients:

t1 → t1 ei(δa−δa′ ), t2 → t2 ei(δb−δb′ ),

r1 → r1 ei(δa−δb′ ), r2 → r2 ei(δb−δa′ ).

In this way, the matrix(
t1 r1

r2 t2

)
can be cast into the symmetric form:(

t1 r1

r2 t2

)
=

( √
T i

√
1 − T

i
√

1 − T
√

T

)
with 0 ≤ T ≤ 1. (14.7)
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For simplicity, we shall restrict ourselves to the discussion of the symmetric beam splitter with
the symmetric matrix:

1√
2

(
1 +i

+i 1

)
(14.8)

and

a′ =
1√
2
(a + ib), b′ =

1√
2
(b + ia),

a′+ =
1√
2
(a+ − ib+), b′+ =

1√
2
(b+ − ia+).

(14.9)

From this, it is easy to derive the corresponding transformation of the quantum states caused
by the beam splitter.

The total vacuum state |0〉a|0〉b remains a total vacuum state: |0〉a|0〉b = |0〉a′ |0〉b′ . For
one-photon states we have, for instance,

|1, 0〉ab → 1√
2
|1, 0〉ab − i√

2
|0, 1〉ab = |1, 0〉a′b′ . (14.10)

The transformation of |n1, n2〉ab is easily evaluated. Particularly simple laws apply for coher-
ent (or squeezed) states, e.g.

|α〉a|β〉b = |α, β〉ab →
∣∣∣∣ 1√

2
(α + iβ),

1√
2
(β + iα)

〉
ab

= |α, β〉a′b′ . (14.11)

Coherent states remain coherent but with transformed coherence parameters.
Even if the second ray is a vacuum state, we have

|α, 0〉ab →
∣∣∣∣ 1√

2
α,

i√
2
α

〉
ab

(14.12)

with both components present.
A beam splitter can be used for measuring unknown states. Suppose that the state of the

light field in the Heisenberg picture is given by the product of a coherent state |α〉a and an
unknown state ρb with respect to the operators a and b:

ρab = |α〉aa〈α| ⊗ ρb. (14.13)

The photon number operators Na′ and Nb′ on the outgoing side are given by

Na′ = a′+a′ = 1
2 [a+a + b+b + i(a+b − b+a)],

Nb′ = b′+b′ = 1
2 [a+a + b+b − i(a+b − b+a)].

(14.14)

In the difference

∆N ′ = Na′ − Nb′ = i(a+b − b+a), (14.15)
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half of the terms cancel out. It is convenient to measure Na′ , Nb′ , and ∆N ′ by counting
outgoing photons.

The expectation value in the state ρab is simply

〈∆N ′〉ρab
= 〈i(α∗b − αb+)〉ρb

(14.16)

or, with α = |α| eiθ,

〈∆N ′〉ρab
= |α|〈b e−i(θ− 1

2 π) + b+ ei(θ− 1
2 π)〉ρb

=
√

2 |α|〈Xθ− 1
2 π〉ρb

. (14.17)

Remarkably enough, we obtain the expectation value of a rotated quadrature with respect to
the operators b and b+. By means of a phase shifter for the oscillator b, we can vary θ in a
controlled way and thus measure the expectation value of all rotated quadratures.

The detection scheme just described is called homodyne detection. The name refers to
the fact that a and b belong to equal frequencies, otherwise one would talk about heterodyne
detection. Homodyne detection only works if the operators of the incoming states are phase
locked, i.e. they must have a stable time-independent phase difference.

When we try to calculate the expectation value 〈(∆N ′)2〉ρab
, we first obtain terms like

aa+b+b, where a+ stands to the right of a such that the expectation value in the coherent state
|α〉 has to be calculated by reordering:

〈aa+b+b〉ρab
= 〈a+abb+〉ρab

+ 〈[a, a+]bb+〉ρab

= (1 + |α|2)〈bb+〉ρb
.

In the strong oscillator limit, |α| � 1, the commutator terms can be neglected and we have

〈(∆N ′)2〉ρab
= 2|α|2〈X2

θ− 1
2 π〉ρb

and

σ2
∆N ′ = 2|α|2σ2

X
θ− 1

2 π
. (14.18)

In particular, the probability distribution for the measured values of ∆N ′ directly gives the
probability distribution for the measured values of Xθ− 1

2 π:

wρb
(xθ− 1

2 π) = 〈xθ− 1
2 π|ρb|xθ− 1

2 π〉 = wρb

(
∆N ′
√

2 |α|

)
. (14.19)

In terms of the Weyl function W (x1, x2), we have

wρb
(xθ) =

1
2π

〈xθ|ρb|xθ〉 =
∫

d2x δ(x1 cos θ + x2 sin θ − xθ) Wρb
(x1, x2). (14.20)

If w(xθ) is known for all θ and for all values of xθ, then the Weyl function Wρb
(x1, x2) is

completely known.
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In eq. (14.20), wρb
(xθ) is just the Radon transform of the Weyl function W (x1, x2). In

general, the Radon transform of a function f : R
n → R is defined by

(Rf)(n, k) =
∫

dnx δ(n · x − k)f(x). (14.21)

The Radon transform (Rf)(n, k) is just the value of the integral over f along the hyperplane
{x | n ·x = k}. Inversion of the Radon transform is achieved by Fourier transformation with
respect to k:∫

dk eikA (Rf)(n, k) =
∫

dnx

∫
dk eikA δ(n · x − k)f(x)

=
∫

dnx eiAn·xf(x) = f̃(An)(2π)n/2. (14.22)

The inverse Fourier transform of f̃(An) gives f(x). Now,

wρb
(xθ) = (RWρb

)(n, k) with n = (cos θ, sin θ), k = xθ, (14.23)

and Wρb
can be obtained by inverting the Radon transform.

In analogy to computer tomography imaging of the human body, which also makes es-
sential use of the Radon transformation, one talks about tomographic reconstruction of the
Wigner function.

With the so-called eight-port interferometer, it is even possible to measure two comple-
mentary quadratures. The arrangement consists of a combination of two homodyne detectors
and is depicted in fig. 14.2.
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Figure 14.2: Principle of an eight-port
interferometer.

There are four incoming rays corresponding to oscillators a1, a2, a3, and a4, and four
outgoing rays with oscillators a′′

1 , a′′
2 , a′′

3 , and a′′
4 , whose photons are measured in detectors

D1, D2, D3, and D4. The incoming state is prepared as

ρ =
∣∣|α1| eiθ

〉
a1 a1

〈|α1| eiθ
∣∣ ⊗ ρa2 ⊗ |0〉a3 a3〈0| ⊗ |0〉a4 a4〈0|, (14.24)
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a coherent state with adjustable phase for a1, a state ρa2 for a2 which is to be analyzed, and
vacuum states for a3 and a4. In one arm there is a device that shifts the phase by π/2.

We have:

[a′
i, a

′
j ] = [a′+

i , a′+
j ] = 0, [a′

i, a
′+
j ] = δij ,

[a′′
i , a′′

j ] = [a′′+
i , a′′+

j ] = 0, [a′′
i , a′′+

j ] = δij .
(14.25)

We readily calculate:

a′′
2 =

1√
2
(a′

2 + ia′
3), a′′

3 =
1√
2
(a′

3 + ia′
2),

a′′
1 =

1√
2
(a′

1 − a′
4), a′′

4 =
i√
2
(a′

4 + a′
1).

(14.26)

The photon number operators N ′′
i = a′′+

i a′′
i all commute, and we obtain

∆N23 = N ′′
2 − N ′′

3 = i(a′+
2 a′

3 − a′+
3 a′

2),

∆N14 = N ′′
1 − N ′′

4 = −(a′+
1 a′

4 + a′+
4 a′

1).
(14.27)

In the strong oscillator limit, |α1| � 1, we may replace a1 by α1 and a+
1 by α∗

1, and replace
α1 ± a3 by α1, and obtain

∆N23 → − 1√
2
(α1a

′+
2 + α∗

1a
′
2)

= −1
2
(α1a

+
2 + α∗

1a2) +
i
2
(α1a

+
4 − α∗

1a4)

=
|α1|√

2
[−Xθ(a2) + Xθ+ 1

2 π(a4)],

∆N14 → − 1√
2
(α1a

′+
4 + α∗

1a
′
4)

= +
i
2
(α1a

+
2 − α∗

1a2) − 1
2
(α1a

+
4 + α∗

1a4)

=
|α1|√

2
[Xθ+ 1

2 π(a2) − Xθ(a4)].

In this approximation, ∆N23 and ∆N14 still commute. Furthermore, in expectation values
with vacuum states for a3 and a4, we may omit the parts with a4 and a+

4 .
Finally, for the expectation values with respect to a state and in the limit |α1| � 1 we may

always replace

∆N23 → −|α1|√
2

Xθ(a2), ∆N14 → |α1|√
2

Xθ+ 1
2 π(a2).

So, in this limit, we obtain two complementary rotated quadrature operators associated to
a2, which do not commute but in the strong oscillator limit are equivalent with respect to
expectation values for states of the form of eq. (14.24).
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Measuring the joint count distribution of ∆N23 and ∆N14, we can readily measure

Qρa2
= 〈ξ|ρa2 |ξ〉,

where ξ = (1/
√

2)(x1 + ix2).

14.2 Correlation functions and quantum coherence

In chapter 12, we have already discussed in some detail the importance and properties of
expectation values of products of stochastic fields. Most of the content of chapter 12 can be
literally taken over to expectation values of products of quantum fields with the caveat that
this time the order of the non-commuting quantum fields has to be respected.

Keeping as close as possible to the notations of chapter 12, we denote by V (x) = V (t, x)
and V +(x) = V +(t, x) the annihilation and creation parts of the operator for the electric
or magnetic field (eq. (13.40)) which, just like the stochastic fields V and V + of chapter 12,
contain only positive and negative frequencies, respectively.

Indices related to polarization information will be suppressed. The operator I(x) = I(t, x)
= V +(x)V (x) will be proportional to the energy density, the photon number density, and the
intensity of the field.

Quite generally, we shall consider expectation values

Γ(n)(x1, . . ., x2n) = 〈V +(x1) · · ·V +(xn)V (xn+1) · · ·V (x2n)〉ρ (14.28)

= Tr{ρV +(x1) · · ·V +(xn)V (xn+1) · · ·V (x2n)}
associated to a given density matrix ρ. Expectation values with a different number of creation
and annihilation operators are less important and will not be considered. The reason why we
prefer normal ordering for the expectation values will become clear in the next section.

In addition, we shall need normalized expectation values:

γ(n)(x1, . . . , x2n) =
Γ(n)(x1, . . . , x2n)

[Γ(1)(x1, x1)]1/2 · · · [Γ(1)(x2n, x2n)]1/2

=
Γ(n)(x1, . . . , x2n)

〈I(x1)〉1/2 · · · 〈I(x2n)〉1/2
. (14.29)

Here γ(n) is called the coherence function of order n. The functions

Γ(n)(x1, . . . , xn, xn, . . . , x1) = 〈V +(x1) · · ·V +(xn)V (xn) · · ·V (x1)〉ρ (14.30)

and

γ(n)(x1, . . . , xn, xn, . . . , x1) =
Γ(n)(x1, . . . , xn, xn, . . . , x1)

〈I(x1)〉 · · · 〈I(xn)〉 (14.31)

will turn out to be of particular importance. We have

Γ(n)(x1, . . . , xn, xn, . . . , x1) ≥ 0, (14.32)

because this quantity is the expectation value of a positive operator of the form A+A.
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From Schwarz’s inequality

|〈A+B〉ρ|2 ≤ 〈A+A〉ρ〈B+B〉ρ, (14.33)

we obtain the inequalities

|Γ(n)(x1, . . . , x2n)|2 ≤ Γ(n)(x1, . . . , xn, xn, . . . , x1)
× Γ(n)(x2n, . . . , xn+1, xn+1, . . . , x2n), (14.34)

and, analogously, for the normalized expectation values γ(n). In particular,

|Γ(1)(x1, x2)|2 ≤ Γ(1)(x1, x1) Γ(1)(x2, x2),

|γ(1)(x1, x2)| ≤ 1.
(14.35)

[There is no corresponding bound for the higher coherence functions γ(n).] If

|γ(1)(x1, x2)| = 1, (14.36)

the state ρ is said to be first-order coherent. This condition was analyzed in detail in chapter
12. For the quantum fields it means that in all expectation values in the state ρ, we can replace

V (x2) = c(x2, x1)V (x1), V +(x2) = c∗(x2, x1)V +(x1), (14.37)

with c(x2, x1) ∈ C. Just as in the classical case, this is a very close relationship of the phases
of the field at different points.

More generally, we can define coherence of higher order n0 if

|γ(n)(x1, . . . , x2n)| = 1 for n ≤ n0, (14.38)

and perfect coherence if

|γ(n)(x1, . . . , x2n)| = 1 for all n. (14.39)

[If the state ρ contains at most n0 photons, then, evidently, γ(n)(x1, . . . , x2n) = 0 for n > n0.]
If ρ is a multi-mode coherent state

ρ = |v〉〈v| with V (x)|v〉 = v(x)|v〉, (14.40)

then we have

Γ(n)(x1, . . . , x2n) = 〈v|V +(x1) · · ·V +(xn)V (xn+1) · · ·V (x2n)|v〉
= v∗(x1) · · · v∗(xn)v(xn+1) · · · v(x2n). (14.41)

This complete factorization of the expectation values immediately implies perfect coherence
to all orders and explains the name “coherent state”.

The quantum field V (x) obeys the same equations of motion as the classical field. Every-
thing that was said in chapter 12 about the propagation of the classical field, including the van
Cittert–Zernicke theorem, remains true in the quantum case.

Again, in most cases of importance, the state ρ will be stationary and the functions
Γ(n)(x1, . . . , x2n) will depend only on time differences. In particular, 〈I(x)〉 will be inde-
pendent of time. The Wiener–Khinchin theorem remains valid.
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14.3 Measurement of correlation functions

The expectation values Γ(n)(x1, . . . , xn, xn, . . . , x1) can be measured directly by counting
photons near the space-time points x1, . . . , xn. Suppose that a photon detector is placed at the
point x1 in space. Detection of a photon means its absorption by the detector, followed by
a cascade of ionization processes. Thus, the interaction Hamiltonian of the detector and the
electromagnetic field will be proportional to the annihilation operator V (x1). The transition
probability w(x1) per unit time from an initial state |i〉 to a final state |f〉 will be proportional
to

wfi(x1) ∼ |〈f |V (x1)|i〉|2 = 〈i|V +(x1)|f〉〈f |V (x1)|i〉. (14.42)

Now, the final state |f〉 will not be registered, and the total probability per unit time of an
absorption of a photon from the initial state |i〉 is

wi(x1) ∼
∑

f

wfi(x1) ∼ 〈i|V +(x1)V (x1)|i〉. (14.43)

In many cases, the initial state |i〉 is not precisely known and has to be described by a density
matrix ρ =

∑
i pi|i〉〈i|. Then the total detection probability per unit time is

wρ(x1) = Tr{ρV +(x1)V (x1)} = 〈V +(x1)V (x1)〉ρ = Γ(1)(x1, x1). (14.44)

Quite analogously, for n photon detectors, n annihilation operators will be relevant, and
the joint probability for detecting photons at x1, . . . , xn in time intervals ∆t1, . . . ,∆tn will
be w(x1, . . . , xn)∆t1 · · ·∆tn with

wρ(x1, . . . , xn) ∼ 〈V +(x1) · · ·V +(xn)V (xn) · · ·V (x1)〉ρ
= Γ(n)(x1, . . . , xn, xn, . . . , x1). (14.45)

If coherence up to order n0 holds, eq. (14.38) will tell us

wρ(x1, . . . , xn) = wρ(x1) · · ·wρ(xn) for n ≤ n0, (14.46)

and the photon counts at different space-time points will be statistically uncorrelated up to
order n0.

The correlation function Γ(1)(x1, x2) for different arguments x1 and x2 can be measured
by interference as explained in connection with Young’s interference experiment in chapter 12.
If an interference device guarantees that at some point x we have V (x) = a1V (x1)+a2V (x2),
then Γ(1)(x1, x2) can be obtained by measuring 〈V ∗(x)V (x)〉ρ. Generalizing Young’s inter-
ference scheme, one can, at least in principle, also measure Γ(x1, . . . , x2n) with all arguments
different.

Let us treat a simple example in somewhat more detail, which will illustrate the descrip-
tion and understanding of the Michelson stellar interferometer and the Hanbury Brown and
Twiss intensity interferometer in the framework of quantum optics. Suppose that the field
V (x) consists of only two modes of equal frequency ω and wave vectors k and k′, with
|k − k′| � |k + k′|. This is an idealization for a light source consisting of two point sources
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and observed from a very large distance. The field V (t, x) will then be given by (compare
eq. (13.39)):

V (t, x) = Eω(ak e−i(ωt−k·x) + ak′ e−i(ωt−k′·x)). (14.47)

An idealized Michelson stellar interferometer will measure

〈[V +(x1) + V +(x2)][V (x1) + V (x2)]〉ρ
= 〈V +(x1)V (x1)〉ρ + 〈V +(x2)V (x2)〉ρ + 2 Re 〈V +(x1)V (x2)〉ρ
= 〈I(x1)〉 + 〈I(x2)〉 + 2 ReΓ(1)(x1, x2), (14.48)

the same quantity as also measured by Young’s interference experiment. With eq. (14.47) the
interesting part of eq. (14.48) will be

2 Re 〈V +(x1)V (x2)〉ρ
= 2|Eω|2 Re

{〈a+
k ak〉ρ e+iω(t1−t2)−ik·(x1−x2) + 〈a+

k′ak′〉ρ eiω(t1−t2)−ik′·(x1−x2)

+ 〈a+
k ak′〉ρ eiω(t1−t2)−i(k·x1−k′·x2)〈a+

k′ak〉ρ eiω(t1−t2)−i(k′·x1−k·x2)
}
. (14.49)

If ρ is a coherent state, all four terms in eq. (14.49) will contribute. But in most cases of interest
non-vanishing expectation values have equal numbers of creation and annihilation operators
for each mode separately. This is seen to be the case for a thermal state ρth or if ρ is a photon
number eigenstate |nk, nk′〉 and also for phase diffused laser light. Assuming in addition that

〈a+
k ak〉ρ = 〈a+

k′ak′〉ρ = 〈N〉ρ, (14.50)

and taking t1 = t2, we obtain

2 Re 〈V +(x1)V (x2)〉ρ
= 2|Eω|2〈N〉ρ{cos[k · (x1 − x2)] + cos[k′ · (x1 − x2)]} (14.51)

= 4|Eω|2〈N〉ρ cos{ 1
2 [(k + k′) · (x1 − x2)]} cos{ 1

2 [(k − k′) · (x1 − x2)]}.
The factor cos{ 1

2 [(k − k′) · (x1 − x2)]} allows for a precise measurement of a small angle
between k and k′. The precision is limited by the first factor cos{ 1

2 [(k + k′) · (x1 − x2)]},
which varies rapidly with x1−x2 and imposes strong requirements on the mechanical stability
of the interferometer.

In the arrangement of Hanbury Brown and Twiss, one measures correlations in joint count
rates 〈V +(x1)V +(x2)V (x2)V (x1)〉ρ, making use of the lack of second-order coherence.
Again, keeping only contributions with paired annihilation and creation operators and assum-
ing t1 = t2, we obtain with eq. (14.47)

〈V +(x1)V +(x2)V (x2)V (x1)〉ρ (14.52)

= |Eω|4
{〈a+2

k a2
k〉ρ + 〈a+2

k′ a2
k′〉ρ + 2〈a+

k a+
k′akak′〉ρ Re(1 + e−i(k−k′)·(x1−x2))

}
and, assuming

〈a+
k ak〉ρ = 〈a+

k′ak′〉ρ = 〈N〉ρ,
〈(a+

k ak)2〉ρ = 〈(a+
k ak)2〉ρ = 〈N2〉ρ, (14.53)

〈a+
k aka+

k′ak′〉ρ = 〈N〉2ρ,
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we find

〈V +(x1)V +(x2)V (x2)V (x1)〉ρ
= 2|Eω|4

(〈N2〉ρ − 〈N〉ρ + 〈N〉2ρ{1 + cos[(k − k′) · (x1 − x2)]}
)
. (14.54)

Notice the absence of the cumbersome rapidly varying term in eq. (14.51). If ρ corresponds to
the state |1k, 1k′〉 with exactly one photon in each mode, eq. (14.54) reduces to

Γ(2)
11 = 2|Eω|4{1 + cos[(k − k′) · (x1 − x2)]}. (14.55)

For Poissonian light and phase diffused laser light we have

〈N2〉ρ − 〈N〉2ρ = 〈N〉ρ
and

Γ(2)
Poisson(x1, x2, x2, x1) = 2|Eω|4〈N〉2ρ{2 + cos[(k − k′) · (x1 − x2)]}, (14.56)

and for thermal light, for instance, starlight, we find that

〈N2
ρ 〉 − 〈N〉2ρ = 〈N〉2ρ + 〈N〉ρ

holds and

Γ(2)
th (x1, x2, x2, x1) = 2|Eω|4〈N〉2ρ{3 + cos[(k − k′) · (x1 − x2)]}. (14.57)

The discussion in chapter 12 shows how the shape of the light source can be determined
from a measurement of Γ(1)(x1, x2) or Γ(2)(x1, x2, x2, x1) even if the source contains more
than just two modes ak and ak′ .

Interferometers can be used not only for detecting the properties of incoming light fields.
It is also possible to assume the light field to be known and to use interference effects to
detect distortions of the interferometer device. In this case a sensitive dependence on x1 −x2

as visible in eq. (14.51) is the highly desirable effect responsible for the sensibility of the
instrument. A first example for this use of interferometry was Michelson’s interferometer,
originally devised to detect contractions due to motion through the ether.

A more recent and very attractive application of interferometry is the construction of grav-
itational wave detectors. Gravitational waves propagate with the speed of light and are emitted
by any arrangement of masses with a time-dependent quadrupole moment. Unfortunately, un-
der normal circumstances, the radiated power is so low that direct detection of gravitational
radiation is extremely difficult. Indirect evidence for the existence of gravitational radiation
was, however, obtained from observing the energy loss in the double pulsar PSR 1913+16.
Strong gravitational radiation is to be expected from collapsing gravitating objects like super-
novas or coalescing black holes. Detecting gravitational waves will open a new window for
astronomy.

Gravitational waves are wave-like perturbations hµν of the space-time metric gµν :

gµν = g0
µν + hµν . (14.58)
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Their effect is a relative length change of the order of magnitude |hµν |. More precisely, trans-
verse to the direction of propagation of a gravitational wave, one has a relative dilatation of
order |h| in one perpendicular direction and a contraction of the same size in the other.

This effect can in principle be detected with a Michelson interferometer (fig. 14.3). The
challenge lies in the smallness of the effect. A theoretical estimate yields |h| ∼ 10−21. With
∆L = Lh, for L = 100 km this corresponds to ∆L = 10−14 cm, less than the diameter of an
atomic nucleus. One may ask how the surface of a mirror in an interferometer can possibly be
defined to such precision, but, fortunately, the surface is composed of many atoms, leading to
an averaging out of the effects of individual atoms and, more importantly, only displacements
of the surface matter rather than the precise definition of its position.

�
�

Laser
beam

Beam
splitter

L

L

�
� �

� Resonators

Figure 14.3: Michelson’s interferometer.

The minimal detectable ∆L = hL is approximately given by

∆L ≈ λ

2π
∆θ, (14.59)

where λ is the wavelength of the light in the interferometer and ∆θ its phase uncertainty.
The frequency of the gravitational wave to be detected is of the order of magnitude of 10–

10 000 Hz, which corresponds to wavelengths of 30 000 to 3 km. Optimal resolution would
require the dimension of the instrument to be about half a wavelength, but dimensions ex-
ceeding a few kilometers are not feasible for Earth-based interferometers, yet are planned
for space-based instruments. The largest instruments that have been built, like the German–
English project GEO 600 near Hannover, the American LIGO, and the French–Italian VIRGO,
using all the tricks of interferometry, have reduced the phase uncertainty to the limit of the
quantum theoretical phase uncertainty σθ. As we saw in section 13.2 (compare fig. 13.1), for
unsqueezed light, this is given by

σθ =
1√〈N〉 . (14.60)

The average photon number 〈N〉 = 〈a+a〉 is determined by the power P of the laser light and
the averaging time t, which has to be smaller than the period of the gravitational wave:

〈N〉 =
Pt

�ω
. (14.61)
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Thus, σθ can be made very small by increasing the power. The main limiting effect for phase
resolution will then be the quantum phase uncertainty of the vacuum mode entering into the
unused port of the beam splitter in the interferometer. By illuminating the unused port with
phase squeezed laser light, phase locked to the main beam, this phase uncertainty can be
further reduced.

The sensitivity of the interferometer can be increased enormously by placing resonators in
its arms. This way, the arm length L is replaced by the effective arm length Leff = RL, where
R is the number of reflections in the resonators. The setting with two arms may be replaced
by a ring-like device (a Sagnac interferometer).

14.4 Anti-bunching and sub-Poissonian light

In this section, we shall discuss the properties of the count statistics of photons detected at a
fixed given point x. We shall consider stationary states ρ such that

〈I(t, x)〉ρ = 〈V +(t, x)V (t, x)〉ρ
is independent of t, and that

γ(1)((t+τ, x), (t, x)) =
〈V +(t+τ, x)V (t, x)〉ρ

〈I(t, x)〉ρ =: γ(1)(τ ) (14.62)

and

〈V +(t, x)V +(t+τ, x)V (t+τ, x)V (t, x)〉ρ
〈I(t, x)〉2ρ

=: γ(2)(τ ) (14.63)

depend on τ but not on t.
In quantum field theory, the photon count correlation function (14.63) differs from the

intensity correlation function

〈I(t+τ, x)I(t, x)〉ρ
〈I(t, x)〉2ρ

=
〈V +(t+τ, x)V (t+τ, x)V +(t, x)V (t, x)〉ρ

〈I(t, x)〉2ρ
=: g(2)(τ ), (14.64)

whereas for commuting classical stochastic fields, as discussed in chapter 12, γ(2)(τ ) and
g(2)(τ ) coincide.

Schwarz’s inequality for g(2)(τ ) together with the stationarity of ρ yield

|g(2)(τ )| ≤ 〈I2(t+τ, x)〉1/2
ρ 〈I2(t, x)〉1/2

ρ

I(t, x)〉2 =
〈I2(t, x)〉ρ
〈I(t, x)〉2ρ

= g(2)(0). (14.65)

Hence, for commuting fields or if the non-commutativity is negligible, we also have

|γ(2)(τ )| ≤ γ(2)(0). (14.66)

Equation (14.66) is called the bunching condition. It means that the probability for two con-
secutive counts at times t and t + τ is maximal for τ = 0; in other words, counts have a
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tendency to aggregate. (By our derivation we see that eq. (14.66) is not a reflection of the
boson character of the photons. Bunching may also occur for fermions – for instance, for neu-
trons.) If the non-commutativity of the fields is not negligible, we may have the classically
forbidden inequality:

|γ(2)(τ )| > γ(2)(0). (14.67)

This is the anti-bunching condition. It means that for small E photons show a tendency to seg-
regate: the probability for detecting one photon immediately after another one is suppressed.
Anti-bunching may occur for fluorescence light. Fluorescence light can be emitted by an atom
only after excitation from the ground state to an excited state. The emission of two immedi-
ately subsequent photons is suppressed because, before the next emission, the atom has to be
excited again.

Our next task is the investigation of intensity and photon count variances at one and the
same space-time point (t, x). From eq. (14.65) we see that

g(2)(0) =
〈I2(t, x)〉ρ
〈I(t, x)〉2ρ

= 1 +
〈I2(t, x)〉ρ − 〈I(t, x)〉2ρ

〈I(t, x)〉2ρ
= 1 +

〈[I(t, x) − 〈I(t, x)〉ρ]2〉ρ
〈I(t, x)〉2ρ

≥ 1. (14.68)

If the non-commutativity of the field is negligible, the classical inequality

γ(2)(0) ≥ 1 (14.69)

will hold. For genuine quantum states, also

γ(2)(0) < 1 (14.70)

will be possible.
To see the significance of eqs. (14.69) and (14.70), it is convenient, though not necessary,

to assume that the light is sufficiently monochromatic and well collimated such that only one
mode contributes. In this situation, g(2)(0) and γ(2)(0) simplify to

g(2)(0) =
〈a+aa+a〉ρ
〈a+a〉2ρ

(14.71)

and

γ(2)(0) =
〈a+a+aa〉ρ
〈a+a〉2ρ

. (14.72)

Now,

γ(2)(0) =
〈a+([a+, a] + aa+)a〉ρ

〈a+a〉2ρ
=

〈a+aa+a〉ρ − 〈a+a〉ρ
〈a+a〉2ρ

=
〈N2〉ρ − 〈N〉ρ

〈N〉2ρ
=

〈N2〉ρ − 〈N2〉2ρ + 〈N〉2ρ − 〈N〉ρ
〈N〉2ρ

=
〈(∆N)2〉ρ − 〈N〉ρ

〈N〉2ρ
+ 1. (14.73)
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Hence, the sign of 〈(∆N)2〉ρ − 〈N〉ρ determines whether γ(2)(0) ≥ 1 or γ(2)(0) < 1. If the
count statistic of the photons is Poissonian, then 〈(∆N)2〉ρ = 〈N〉ρ. If the count distribution
is broader, with larger variance, we are in the super-Poissonian case with

〈(∆N)2〉ρ > 〈N〉ρ and γ(2)(0) > 1; (14.74)

and if the distribution is narrower, we have the sub-Poissonian case with

〈(∆N)2〉ρ < 〈N〉ρ and γ(2)(0) < 1. (14.75)

Sub-Poissonian light is a genuine quantum effect and classically impossible. We already know
and can immediately read off from eq. (14.72) that coherent light is Poissonian.

If ρ = |n〉〈n| is a pure number state, then we are in the extreme sub-Poissonian situation:

〈∆N〉2 = 0 and γ(2)(0) = 1 − 1
〈N〉ρ . (14.76)

From this and also from eq. (14.73) it is evident that strongly sub-Poissonian light must
have a small mean photon number 〈N〉ρ. For sub-Poissonian light, the distribution function
Pρ(α, α∗) of section 13.4 cannot be everywhere positive. Indeed, from eq. (13.143) we learn
that

γ(2)(0) =
1

〈a+a〉2ρ

[
1
π

∫
d2α (α∗α)2P (α, α∗) −

(
1
π

∫
d2α α∗α P (α, α∗)

)2]
+ 1

=
1

〈a+a〉2ρ

[
1
π

∫
d2α (α∗α)2P (α, α∗) − 〈a+a〉2

]
+ 1

=
1

〈a+a〉2ρ
1
π

∫
d2α (α∗α − 〈a+a〉)2P (α, α∗) + 1.

If P (α, α∗) ≥ 0 everywhere, we have γ(2)(0) ≥ 1.
For amplitude squeezed light we find that

〈(∆N)2〉ρ < 〈N〉ρ,
because the variance of N is smaller than for coherent light. Hence, also amplitude squeezed
light is sub-Poissonian.

The ratio

fρ =
〈(∆N)2〉ρ

〈N〉ρ (14.77)

is called the Fano factor of the state ρ. Sub-Poissonian light corresponds to fρ < 1.
The Fano factor changes when light falls on a beam splitter. If the beam splitter is described

by eq. (14.1), and if the light corresponding to the operator a is in the state ρ, and the light
corresponding to the operator b is in the vacuum state, then it is an easy exercise to show that
the outgoing light rays with the operators a′ and b′ are in the states ρa′ and ρb′ with Fano
factors

1 − fρa′ = (1 − fρ)|t1|2,
1 − fρb′ = (1 − fρ)|r1|2.

In other words, the beam splitter pushes the light closer to the Poissonian case.



15 Interaction of radiation and matter

15.1 The electric dipole interaction

The main subject of this chapter is the detailed description of a system consisting of an atom
in a light field. The Hamiltonian

H = Hlight + Hatom + Hint = H0 + Hint (15.1)

will consist of two parts pertaining to the light field and the atom plus an additional interaction
part. For each part we shall make simplifying assumptions, which could be lifted stepwise in
later refinements.

(a) We assume that only a finite number M of modes contribute to the field, hence

Hlight = �

M∑
γ=1

Ωγa+
γ aγ . (15.2)

(b) Only a finite number of discrete energy eigenstates of Hatom is effectively accessible.
This, in particular, means that we neglect the center-of-mass motion of the atom and
disregard ionization processes. Let {|ϕi〉} (i = 1, . . . , N ) be an orthogonal system of
eigenstates,

Hatom|ϕi〉 = Ei|ϕi〉 = �ωi|ϕi〉, (15.3)

ordered such that

ωi ≥ ωj for i < j. (15.4)

In the subspace spanned by the states |ϕi〉, an operator C can be written in the form

C =
∑
i,j

|ϕi〉〈ϕi|C|ϕj〉〈ϕj| =
∑
i,j

Cijσij . (15.5)

The operators

σij = |ϕi〉〈ϕj | (15.6)

satisfy

σijσrs = δjrσis.
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In a matrix representation with respect to the basis {|ϕi〉}, σij is a matrix with the entry
1 at position (i, j) and 0 entries elsewhere. Now Hatom will be of the form

Hatom =
M∑
i=1

�ωiσii. (15.7)

(c) The interaction between the atom and the field will be the usual Schrödinger picture
dipole interaction Hamiltonian

Hint = D · E(x0), (15.8)

where D is the dipole operator D =
∑

A eAQA of the atom composed of the position
operators of its constituents, and E(x0) is the electric field operator from eq. (13.40).
This, in particular, implies that the field does not change appreciably over the diameter
of the atom. This is true if the wavelengths of the radiation field are much larger than the
atomic diameters.

If the center-of-mass motion of the atom were taken into account, the field E(x0) would
also enter at points x �= x0. Under these hypotheses, Hint will be

Hint =
∑
i,j,γ

�(gγ
ijσijaγ + gγ∗

ij σjia
+
γ ), (15.9)

with

�gγ
ij = i

√
�ωγ

2ε0
〈ϕi|D|ϕj〉uγ(x0). (15.10)

So, altogether, our Hamiltonian will be given by

H =
M∑

γ=1

�Ωγa+
γ aγ +

N∑
i=1

�ωiσii +
∑
i,j,γ

�(gγ
ijσijaγ + gγ∗

ij σjia
+
γ )

= H0 + Hint. (15.11)

Starting from a different field–atom interaction, for instance from an electric quadrupole or
magnetic dipole interaction, we would have arrived at a Hamiltonian of the same form. What
really matters is the locality of the interaction and the feature that the field enters only linearly.

The time evolution of the system is described by the unitary time development operator
U(t), which solves the differential equation plus initial condition:

i�
d
dt

U(t) = HU(t), U(0) = 1. (15.12)

We also consider the free evolution operator U0(t) with

i�
d
dt

U0(t) = H0U0(t), U0(0) = 1. (15.13)
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In the interaction picture, the important object will be the evolution operator

UI(t) = U+
0 (t)U(t), UI(0) = 1, (15.14)

which satisfies

i�
d
dt

UI(t) = HIUI(t) (15.15)

with the interaction operator

HI(t) = U+
0 (t)HintU0(t). (15.16)

In our case we obtain

HI(t) =
∑
i,j,γ

�
(
gγ

ijσijaγ ei(ωi−ωj−Ωγ)t + gγ∗
ij σjia

+
γ e−i(ωi−ωj−Ωγ)t

)
. (15.17)

The various terms in HI will give rise to particularly large transition probabilities between
different atomic levels if the resonance conditions are fulfilled:

∆γ
ij := (ωi − ωj − Ωγ) = 0. (15.18)

The quantities ∆γ
ij are called detunings.

In the rotating phase approximation, which will be adopted from here onwards, only in-
teraction terms are kept in which an excitation of the atom is associated with the annihilation
of a photon and a de-excitation with the creation of a photon. This corresponds to neglecting
faster oscillating terms with larger detunings in eq. (15.17). The final Hamiltonian with which
we shall work will then be

H =
M∑

γ=1

�Ωγa+
γ aγ +

N∑
i=1

�ωiσii +
∑

i<j,γ

�(gγ
ijσijaγ + gγ∗

ij σjia
+
γ ) (15.19)

with

HI =
∑

i<j,γ

�
(
gγ

ijσijaγ ei∆γ
ijt + gγ∗

ij σjia
+
γ e−i∆γ

ijt
)
. (15.20)

The rotating phase approximation has already been employed in chapter 6 and has turned out
to be a good and valuable approximation in many circumstances.

Strong fields interacting with the atom can sometimes be treated as classical fields. This
corresponds to replacing the operators aγ and a+

γ in eq. (15.20) by complex numbers αγ and
α∗

γ . Thus, in the semiclassical approximation, we have

HI,sc =
∑

i<j,γ

�
(
gγ

ijσijαγ ei∆γ
ijt + gγ∗

ij σjiα
∗
γ e−i∆γ

ijt
)
. (15.21)

Now, the total Schrödinger picture Hamiltonian for the atom in the field will be time-
dependent:

Hsc =
∑

i

�ωiσii +
∑

i<j,γ

�
(
gγ

ijσijαγ e−iΩγt + gγ∗
ij σjiα

∗
γ eiΩγt

)
. (15.22)
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The quantities Ωγ
Rij = gγ

ijαγ are called complex Rabi frequencies. Quite frequently, the ex-
perimental arrangement is such that only resonant terms with vanishing detuning are relevant.
In this case, HI and HI,sc are time-independent. In particular, the evolution equation (15.15)
with HI,sc is just a system of linear differential equations with constant coefficients, which
can be solved explicitly with standard methods. We shall return to this case in a later section.

The minimal case M = 1, N = 2 of a one-mode field interacting with a two-level system
is of particular importance as a theoretical laboratory and also approximately realized in many
experiments. With a slight change to the more standard notation

σ3 = σ11 − σ22 =
(

1 0
0 −1

)
, σ+ = σ12 =

(
0 1
0 0

)
, σ− = σ21 =

(
0 0
1 0

)
,

(15.23)

σ+σ− = σ11, σ−σ+ = σ22, [σ3, σ±] = ±2σ±, σ3σ± + σ±σ3 = 0, (15.24)

the Hamiltonian of eq. (15.19) assumes the form

H = �Ωa+a + 1
2�ωσ3 + �gσ+a + �g∗σ−a+, (15.25)

with ω = ω1 − ω2.
To arrive at eq. (15.25), we have subtracted a constant 1

2 (ω1 + ω2)1 from H . Equa-
tion (15.25) is called the Jaynes–Cummings Hamiltonian. Because of its great importance,
we shall devote to it a section of its own (section 15.4).

The interaction Hamiltonian of the Jaynes–Cummings model is

HI = �
(
gσ+a ei∆t + g∗σ−a+ e−i∆t

)
, (15.26)

with

∆ = ω − Ω. (15.27)

In the semiclassical case, the evolution equation for

HI,sc = �
(
gασ+ ei∆t + g∗α∗σ− e−i∆t

)
(15.28)

= �

(
0 gα ei∆t

(gα)∗ e−i∆t 0

)
= � e

1
2 i∆σ3t

(
0 gα

(gα)∗ 0

)
e−

1
2 i∆σ3t

can be solved in a closed form. Indeed, with [σ3, σ±] = ±2σ±, it is easy to see that HI,sc in
eq. (15.28) is also the interaction Hamiltonian of the simple time-independent Hamiltonian:

Ĥ = 1
2�∆σ3 + �[gασ+ + (gα)∗σ−]. (15.29)

Here Ĥ can be rewritten as

Ĥ = �

(
1
2∆ gα

(gα)∗ −1
2∆

)
= �Λ

(
∆/2Λ gα/Λ

(gα)∗/Λ −∆/2Λ

)
= �ΛΣ, (15.30)

with

Λ =
√

1
4∆2 + |gα|2 and Σ2 = 1.
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Now the exponential function exp[−(i/�)Ĥt] can be readily evaluated to

e−(i/�)Ĥt = cos(Λt) · 1 − i sin(Λt) · Σ. (15.31)

Furthermore,

UI(t) = e
1
2 i∆σ3t e−(i/�)Ĥt (15.32)

and

U(t) = e−
1
2 iωσ3t UI(t) = e−

1
2 iΩσ3t e−(i/�)Ĥt. (15.33)

So, finally, we obtain for the full time evolution operator of the semiclassical Jaynes–
Cummings model:

U(t) =


[

cos(Λt) − i
∆
2Λ

sin(Λt)
]

e−
1
2 iΩt −i

gα

Λ
sin(Λt) e−

1
2 iΩt

−i
g∗α∗

Λ
sin(Λt) e

1
2 iΩt

[
cos(Λt) + i

∆
2Λ

sin(Λt)
]

e
1
2 iΩt

 .

(15.34)

The occupation probabilities for the two levels are given by w1,2 = |c1,2(t)|2 with(
c1(t)
c2(t)

)
= U(t)

(
c1(0)
c2(0)

)
, (15.35)

and w1,2(t) will oscillate periodically with period 2Λ. This result differs radically from the
one we shall obtain for the full Jaynes–Cummings model.

Quite generally, the time evolution of a mixed state ρ of our system will be determined by
the quantum Liouville equation:

d
dt

ρ =
1
i�

[H, ρ], (15.36)

where H can be any one of the Hamiltonians described in this section. In realistic situations,
the system will not be closed, and there will be losses by evading photons or occupation of
states not explicitly included into the model. These effects can be dealt with phenomenologi-
cally by introducing a Hermitian non-negative damping operator Γ and replacing eq. (15.36)
by

d
dt

ρ =
1
i�

[H, ρ] − 1
2 (Γρ + ρΓ). (15.37)

This equation guarantees that ρ remains Hermitian and positive. The losses are visible from
the identity

d
dt

Tr(ρ) = −Tr(ρΓ) ≤ 0. (15.38)
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This decrease of Tr ρ may be canceled by adding another term to eq. (15.37):

d
dt

ρ =
1
i�

[H, ρ] − 1
2 (Γρ + ρΓ) + Γ1/2ρΓ1/2. (15.39)

Equation (15.39) is a simple example of a rich class of equations of motion of so-called Lind-
blad form:

d
dt

ρ =
1
i�

[H, ρ] − 1
2

∑
i

{V +
i Vi, ρ} +

∑
i

ViρV +
i , (15.40)

which are known to be the most general linear equations of motion for ρ preserving Hermitic-
ity and positivity and keeping ρ = 1 fixed.

15.2 Simple laser theory

Lasers are a crucial part of any experiment in quantum optics. It was only with the advent of
the laser that quantum optics could start to develop. The functional principle of the laser is
easily described.

Light is emitted by the transition from an excited level with energy E3 to another level
with energy E2. The light-emitting medium is placed in an optical resonator such that the
emitted light triggers further stimulated transitions from E3 to E2. If the resonator is correctly
tuned, there will be feedback, and the medium will emit light of strong intensity in a coherent
way. In order to maintain stationary conditions, the upper level E3 has to be continuously
repopulated by a process of optical pumping: by absorption of pumping energy from a third
level E1, direct or indirect transitions are induced, which stabilize the occupation number of
the level E3.

The details of a quantitative description are complicated and strongly dependent on the
actual type of laser. Indeed, laser theory and technology have developed into a wide and im-
portant field of its own. Here we shall content ourselves with the description by simple rate
equations, which allow the understanding of the laser principle under very general conditions.
In our presentation, we follow H. A. Bachor. For details we refer the reader to the rich litera-
ture on lasers – for instance, the comprehensive monograph of A. E. Siegman.

Consider M atoms with three levels. The numbers of atoms in the states E1, E2, and E3

are denoted by M1, M2, and M3, respectively. We refer to J1 = M1/M , J2 = M2/M , and
J3 = M3/M as the relative occupation numbers. Let n = nγ/M be the number of photons
with energy E3 − E2 per atom. The strength of the pumping process and the rate of induced
transitions between E3 and E2 are characterized by positive constants Π and G, respectively.
Finally, we introduce positive constants γ32 and γ21 describing the rate of spontaneous transi-
tions from E3 to E2 and from E2 to E1, respectively, and a positive constant κ taking account
of photon losses from absorption and from leaving the resonator.
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Figure 15.1: The electronic levels taking part in
laser action.

The validity of the following rate equations is immediately clear from fig. (15.1):

dJ1

dt
= −ΠJ1 + γ21J2,

dJ2

dt
= G(J3 − J2)n + γ32J3 − γ21J2, (15.41)

dJ3

dt
= −G(J3 − J2)n − γ32J3 + ΠJ1,

dn

dt
= G(J3 − J2)n − κn.

Equations (15.41) describe a nonlinear dynamical system for the quantities J1(t), J2(t), J3(t),
and n(t). The conservation law

d
dt

(J1 + J2 + J3) = 0 (15.42)

is a consequence of eqs. (15.41), and the constraint

J1 + J2 + J3 = 1 (15.43)

can be consistently imposed. Stationary solutions are found by equating the left-hand sides of
eqs. (15.41) to zero and solving for J1, J2, J3, and n. Two solutions are found, one with n ≡ 0
and one with

n =
Π(γ21 − γ32)
κ(2Π + γ21)

− 1
G

Π(γ21 + γ32) + γ21γ32

(2Π + γ21)
. (15.44)

The second solution, which corresponds to continuous operation of the laser, is only physical
if n > 0, which requires γ21 > γ32.

In fact, γ21 > γ32 is necessary for spontaneous depletion of the state E2, without which
stimulated transitions from E3 to E2 would rapidly come to an end. In addition, for a positive
stationary value of n, the pumping strength Π must be larger than a critical value Π0. If the
pumping rate were too low, the occupation number of E3 would be too small for a steady
operation of the laser. This threshold behavior of Π is evident from eq. (15.44), because for
very small Π the negative term on the right-hand side will dominate.
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The last equation of (15.41) tells us that stationary light emission n > 0 requires an
occupation number inversion J3 > J1. Contrary to the thermal equilibrium distribution, the
occupation number of the higher state E3 must exceed the occupation number of E1.

Depending on the relative values for the spontaneous lifetime γ32 and the loss rate κ, one
can distinguish three types of lasers:

• Type 1: γ32 � κ, e.g. dye lasers;

• Type 2: γ32 ≈ κ, e.g. visible gas lasers;

• Type 3: γ32 	 κ, e.g. solid-state and semiconductor lasers.

A complete quantum-mechanical treatment of the laser is complicated. Two main approaches
are possible.

In the first alternative, one considers a generalized quantum Liouville equation of the type
eq. (15.37), where the density operator ρ may also depend on space and describes a quantum
system consisting of a radiation field plus atoms or molecules with at least three levels. Suit-
able stochastic extra terms in the Hamiltonian may be introduced to describe the influence of
external noise perturbations.

Alternatively, one may consider a Heisenberg equation of motion for the occupation num-
ber operators of the various levels and for the photon field number operators. If additional
external noise terms are introduced, the dynamical equation to be solved will be a Heisenberg–
Langevin equation.

A quantum-mechanical treatment will yield the fluctuations for the observables of the laser
and will allow for a precise determination of the quantum state of the emitted light field. Not
surprisingly, sufficiently far above the pumping threshold Π0, this state turns out to be very
close to a coherent state, because the stimulated emission of the atoms in the laser is well
correlated under these conditions.

15.3 Three-level systems and atomic interference

In this section, we shall concentrate on the interesting effects of the coherent superposition of
atomic eigenstates on transitions mediated by the electromagnetic field. The minimal arrange-
ment to study such phenomena is an atomic three-level system with two possible electromag-
netic transitions. There are three different configurations, which are depicted in fig. 15.2: a Λ
configuration with one upper level and two nearly degenerate lower levels; a V configuration
with one lower level and two nearly degenerate upper levels; and a cascade configuration.

Consider the spontaneous decay of a system in the V configuration prepared in a super-
position state

|ψ〉 = c1 e−iω1t|ϕ1〉 + c2 e−iω2t|ϕ2〉. (15.45)

The transition amplitude to |ϕ3〉 will be a superposition of two terms with different frequen-
cies, and the occupation probability w3(t) of the state |ϕ3〉 will contain a beat mode term with
an oscillation in the difference frequency ω1 − ω2. The same oscillations can be observed in
the counting rate of photons emerging from the transition. This typically quantum interference
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Figure 15.2: The level configurations for three-level systems.

phenomenon is completely analogous to the interference pattern in the quantum-mechanical
double-slit experiment: two possible pathways through two different holes interfere to give the
typical pattern. The interference disappears if “which path” information is available telling us
through which hole the particle reached the screen. In the same way, the beat mode in the tran-
sition will disappear if there is information about the excited state from which the ground state
was reached, for instance by a precision measurement of the energy of the outgoing photons.

Quantum beats were first observed in the so-called Hanle effect, where a coherent super-
position of two states with different magnetic quantum numbers is produced by interaction
with an electromagnetic field transverse to the original quantization axis. Interference phe-
nomena of transition amplitudes are also visible in induced transitions. By forcing the system
into a suitable superposition state, it is even possible to suppress transitions completely by
destructive interference of transition amplitudes. In this way, absorption can be blocked for
Λ configurations and emission for V configurations. The corresponding superposition state is
also called a dark state or a trapped state.

Such phenomena can be discussed in a simple exactly solvable model. Consider the semi-
classical interaction picture Hamiltonian HI,sc of eq. (15.22) with a three-level system and
two interaction terms with an external classical light field that is tuned to resonance such that
the detunings vanish. Then HI,sc is of the form

HI,sc = �(Ω2σ12 + Ω3σ13 + Ω∗
2σ21 + Ω∗

3σ31)

= �

 0 Ω2 Ω3

Ω∗
2 0 0

Ω∗
3 0 0

 , (15.46)

where, this time, we have not insisted on a special ordering of the atomic levels and

Ω2 = (g12α12)(∗), Ω3 = (g13α13)(∗), (15.47)

are the complex Rabi frequencies of their complex conjugates. They can be adjusted by chang-
ing the phases and intensities of the external radiation fields.

The matrix (15.46) is the matrix representation with respect to the energy eigenstates

|ϕ1〉 =

1
0
0

 , |ϕ2〉 =

0
1
0

 , |ϕ3〉 =

0
0
1

 , (15.48)
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of the unperturbed atomic Hamiltonian

H0 = �

ω1 0 0
0 ω2 0
0 0 ω3

 .

The eigenvalues λi and eigenstates |ψi〉 of eq. (15.46) are readily determined:

λ1 = 0, |ψ1〉 =
1
Ω

 0
Ω3

−Ω2

 ,

λ2 = Ω, |ψ2〉 =
1

Ω
√

2

Ω
Ω∗

2

Ω∗
3

 , (15.49)

λ3 = −Ω, |ψ3〉 =
1

Ω
√

2

−Ω
Ω∗

2

Ω∗
3

 ,

with

Ω =
√
|Ω2|2 + |Ω3|2. (15.50)

Then, with respect to the basis |ψ1〉, |ψ2〉, |ψ3〉, the time evolution operator

UI(t) = e−(i/�)HIt

is given by the matrix:

UI(t) �

1 0 0
0 e−iΩt 0
0 0 eiΩt

 , (15.51)

and with respect to the basis |ϕ1〉, |ϕ2〉, |ϕ3〉, we have

UI(t) � 1
Ω2


Ω2 cos(Ωt) −iΩΩ2 sin(Ωt) −iΩΩ3 sin(Ωt)

−iΩΩ∗
2 sin(Ωt) |Ω3|2 + |Ω2|2 cos(Ωt) Ω∗

2Ω3[cos(Ωt) − 1]

−iΩΩ∗
3 sin(Ωt) Ω2Ω∗

3[cos(Ωt) − 1] |Ω2|2 + |Ω3|2 cos(Ωt)

 .

(15.52)

In our model, the trapped state without transitions to other states is just given by

|ψ1〉 =
1
Ω

 0
Ω3

−Ω2

 .
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Let us mention two different methods to prepare the trapped state |ψ1〉.
1. Adiabatic population transfer. One starts with Ω3 = 0; then the trapped state is given by

|ψ1(Ω3=0)〉 = −|ϕ3〉. The system is prepared in the eigenstate |ϕ3〉 of H0, which can be
easily achieved. Now one slowly switches on Ω3 by increasing the resonant external field
with frequency ω13. According to the adiabatic theorem, the system will remain in the
eigenstate |ψ1(Ω3)〉 of HI(Ω3) with eigenvalue λ1 = 0, which is always a trapped state
corresponding to the instantaneous value of Ω3. (If one subsequently slowly switches off
Ω2, one will have achieved an adiabatic transition of the state from |ϕ3〉 to |ϕ2〉.)

2. Combination of pumping and decay. A pair of atomic levels can also be forced into a
trapped state by optical pumping. The difference frequency of the two levels is irradiated
with high intensity. The emerging coherent superposition of the two states can also be
described as a superposition of the trapped state and a state orthogonal to it. The trapped
component will survive because of its stability, whereas the orthogonal component will
decay.

An ensemble of atoms in a trapped state is called phasonium, a substance with many surprising
properties.

In what follows, we shall describe several phenomena originating from the coherent su-
perposition of atomic states in as simple a way as possible. A more detailed description based
on an equation of motion for the density operator ρ similar to eq. (15.37) can be rather com-
plicated. For details we refer the interested reader to more comprehensive monographs like
Scully and Zubairy.

15.3.1 Electromagnetically induced transparency

This is the effect of preventing absorption by forcing the system into a trapped state from
which or into which transitions are blocked. Then the so prepared phasonium will be transpar-
ent for the frequency that belongs to the blocked transition. In our simple model of eq. (15.46),
this effect can be understood in the following way.

����
���� 1

2

3

ω1

ω2

ω3

Ω2

Ω3

(a)

����
����

3

2

1

ω3

ω2

ω1

Ω2

Ω3

(b)

Figure 15.3: Configurations for electromagnetically induced transparency.

We assume the system to be in one of the configurations depicted in fig. 15.3. We apply
strong pumping between the levels ω1 and ω2, i.e. irradiation of high-intensity light with
frequency |ω1 − ω2|. In our model, this corresponds to the situation |Ω2| � |Ω3|.
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From eqs. (15.49) and (15.50) we see that in the limit Ω3/Ω2 → 0 the eigenstates of HI

are given by

|ψ1〉 =

 0
0

−Ω2/|Ω2|

 , |ψ2〉 =
1√
2

 1
Ω∗

2/|Ω2|
0

 , |ψ3〉 =
1√
2

 −1
Ω∗

2/|Ω2|
0

 .

(15.53)

This means that there are no transitions between |ϕ3〉 on the one hand and any linear combi-
nation of |ϕ1〉 and |ϕ2〉 on the other. Indeed, in the same limit we have

UI(t) =


cos(|Ω2|t) −i(Ω2/|Ω2|) sin(|Ω2|t) 0

−i(Ω∗
2/|Ω2|) sin(|Ω2|t) cos(|Ω2|t) 0

0 0 1

 . (15.54)

For small but finite values of Ω3/Ω2, we can easily evaluate the transition rates:

• Consider first the situation of fig. 15.3(a). Assume the system to be in the state |ϕ3〉. Then
the occupation probabilities of the levels |ϕ1〉 and |ϕ2〉 are given by eq. (15.52)

w13(t) =
∣∣〈ϕ1|UI(t)|ϕ3〉

∣∣2 =
∣∣∣∣Ω3

Ω

∣∣∣∣2 sin2(Ωt) 	 1,

w23(t) =
∣∣〈ϕ2|UI(t)|ϕ3〉

∣∣2 =
|Ω2Ω3|2
|Ω|4 [cos(Ωt) − 1]2 	 1.

(15.55)

• For the configuration of fig. 15.3(b) we assume that the system is initially in the state
|ϕ1〉 or |ϕ2〉 (or any superposition of the two). Then we readily find

w31(t) = w13(t), w32(t) = w23(t),

with w13(t) and w23(t) as in eq. (15.55).

Hence, in any case, absorption from the lower state(s) is suppressed. To get an intuitive feeling
for this result, we notice that, for small t, transitions between |ϕ1〉 and |ϕ3〉, irrespective of
the values of Ω2 and Ω3, will have a small probability

w13(t) = w31(t) ∼ t2.

Direct transitions between |ϕ2〉 and |ϕ3〉 are impossible in our model. They have to go via
the state |ϕ1〉. Correspondingly, eq. (15.52) tells us that, for small t, the transition probability
is even smaller:

w23(t) = w32(t) ∼ t4.

Now, due to strong pumping, there are fast oscillations of the system between the states |ϕ1〉
and |ϕ2〉. As a consequence, the state will have already switched between |ϕ1〉 and |ϕ2〉 before
any transition of either of these two states to the state |ϕ3〉 can have occurred with sizable
probability.
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15.3.2 Refractive index enhancement

In chapter 2, we saw that absorption is determined by the imaginary part of the refractive index
and that at resonance the refractive index is purely imaginary. A little bit off resonance, both
the real and the imaginary parts are large. It is now possible to suppress absorption by means
of trapped states and at the same time to maintain a large real part of the refractive index. This
can be achieved, for example, by a weak additional occupation of the excited level.

In this way, phasonium may be transparent and show very large refraction at the same
time.

15.3.3 Lasing without inversion

In section 15.2, we saw that a lasing transition with positive gain requires population inversion:
the occupation of the higher level must dominate the lower level. Otherwise, the resonant light
field would induce more absorption from the lower level than emission from the upper level.

Now, if the lower level is replaced by a doublet of states forced into a trapped state, ab-
sorption may be blocked and lasing will be possible without inversion. In our simple model,
we consider the system to be in the Λ configuration of fig. 15.2(a). We assume the initial state
to be given by

|ψ(0)〉 = c1|ψ1〉 + c2|ϕ1〉 = c1|ψ1〉 +
c2√
2
(|ψ2〉 − |ψ3〉) (15.56)

(compare eq. (15.49)). For later time t, the state will be

|ψ(t)〉 = c1|ψ1〉 +
c2√
2

(|ψ2〉 e−iΩt − |ψ3〉 eiΩt
)
. (15.57)

The occupation probability for the upper state |ϕ1〉 will be

w1(t) =
∣∣〈ϕ1|ψ(t)〉∣∣2 = 1

2 |c2|2
∣∣e−iΩt + eiΩt

∣∣2 = 2|c2|2 cos2(Ωt). (15.58)

For small t, this is a decreasing function of t, which means lasing with a positive gain irrespec-
tive of the values of c1 and c2. Now, for |c1| � |c2|, the lower levels are much more populated
than the upper one, and we have lasing without inversion.

15.3.4 Correlated emission laser

This is another application of coherent superposition that we would just like to mention. Spon-
taneous transitions from the upper to the lower of the two lasing levels usually occur randomly
and uncorrelated. They are a source of noise for the emerging laser light, which is present even
if other sources, for instance due to noisy pumping, have been suppressed. If now the upper
level of a laser is replaced by a doublet of states prepared in a coherent superposition, sponta-
neous emission will be correlated just like induced emission, and noise will be further reduced.
This device is, for instance, applied in gravitational detectors.
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15.4 The Jaynes–Cummings model

The Jaynes–Cummings Hamiltonian (eq. (15.25)),

H = �Ωa+a + 1
2�ωσ3 + �(gσ+a + g∗σ−a+)

= H0 + �(gσ+a + g∗σ−a+), (15.59)

describes an extremely instructive model system. On the one hand, it captures many charac-
teristic physical features of systems with interacting matter and radiation; on the other, the
associated quantum-mechanical problem can be solved in closed form. With the notation of
section 15.1, we can write the eigenstates of the free Hamiltonian H0 as

|n, i〉 = |n〉 ⊗ |ϕi〉 (i = 1, 2) (15.60)

with

H0|n, 2〉 = (�Ωn − 1
2�ω)|n, 2〉,

H0|n, 1〉 = (�Ωn + 1
2�ω)|n, 1〉.

(15.61)

The quantity

C1 := a+a + 1
2σ3 (15.62)

is conserved because excitation is associated with absorption of a photon and de-excitation
with emission of a photon. C1 can be interpreted as the total excitation degree of atom plus
photons. One readily verifies that

[H, C1] = 0. (15.63)

The states |n, i〉 are eigenstates of C1:

C1|n, 1〉 = (n + 1
2 )|n, 1〉,

C1|n, 2〉 = (n − 1
2 )|n, 2〉.

(15.64)

The eigenvalue (n − 1
2 ) is two-fold degenerate for n ≥ 1:

C1|n, 2〉 = (n − 1
2 )|n, 2〉,

C1|n−1, 1〉 = (n − 1
2 )|n−1, 1〉,

(15.65)

whereas for n = 0 the only eigenstate |0, 2〉 with

C1|0, 2〉 = −1
2 |0, 2〉 (15.66)

is the unique ground state of H:

H|0, 2〉 = −1
2�ω|0, 2〉. (15.67)
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Another conserved quantity is

C2 := 1
2∆σ3 + gσ+a + g∗σ−a+, ∆ = ω − Ω, (15.68)

but there is a relation between H , C1, and C2:

H = �ΩC1 + �C2. (15.69)

The conservation of C1 facilitates the diagonalization of H . Eigenstates of H can be as-
sumed to be eigenstates of C1. In the two-dimensional eigenspace of C1 that belongs to the
eigenvalue n − 1

2 (n > 0), the eigenstates of H are of the form

|ψn〉 = bn−1,1|n−1, 1〉 + bn,2|n, 2〉. (15.70)

The Hamiltonian (15.59), restricted to this eigenspace of C1, is given by the matrix

�

(
(n − 1)Ω + 1

2ω
√

n g√
n g∗ nΩ − 1

2ω

)
= �(n − 1

2 )Ω1 + �

(
1
2∆

√
n g√

n g∗ −1
2∆

)
, (15.71)

which can easily be diagonalized to give the eigenvalues and eigenvectors of H . We find

|ψn±〉 = b±n−1,1|n−1, 1〉 + b±n,2|n, 2〉, (15.72)

with

b±n,2 =
−1
N±

( 1
2∆ ∓ Λn), b±n−1,1 =

1
N±

√
n g,

Λn :=
√

1
4∆2 + n|g|2 , (15.73)

N2
± := 2Λ2

n ∓ ∆Λn,

and

H|ψn±〉 = �Ωn±|ψn±〉 (15.74)

with

Ωn± = (n − 1
2 )Ω ± Λn. (15.75)

For g �= 0, this spectrum differs from the spectrum in eq. (15.61) of H0, a phenomenon
known as the dynamical Stark effect. From these results, one immediately calculates the time
translation operator U = exp[−(i/�)Ht].

In view of the importance of the Jaynes–Cummings model, we derive U(t) also in another
way, which gives us additional insight. Just as in the semiclassical case of section 15.1, the
interaction Hamiltonian HI of eq. (15.26) can be written as

HI = �
(
gσ+a ei∆t + g∗σ−a+ e−i∆t

)
= � e+ 1

2 i∆σ3t(gσ+a + g∗σ−a+) e−
1
2 i∆σ3t (15.76)
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(compare eq. (15.24)). In view of eq. (15.16), eq. (15.76) means that HI is also the interaction
Hamiltonian for the Hamiltonian

Ĥ = 1
2�∆σ3 + �(gσ+a + g∗σ−a+) = �C2 = �

(
1
2∆ ga

g∗a+ −1
2∆

)
, (15.77)

such that

UI(t) = e
1
2 i∆σ3t e−(i/�)Ĥt (15.78)

and

U(t) = U0(t)UI(t) = e−iΩ(a+a+ 1
2 σ3)t e−(i/�)Ĥt = e−iΩC1t e−(i/�)Ĥt. (15.79)

Here Ĥ is time-independent and e−(i/�)Ĥt can be evaluated in the following way. First we
have, using eq. (15.24):(

1
�
Ĥ

)2

= 1
4∆21 + |g|2(σ+σ−aa+ + σ−σ+a+a) (15.80)

=

(
1
4∆2 + |g|2aa+ 0

0 1
4∆2 + |g|2a+a

)
=:

(
Λ̂2

+ 0

0 Λ̂2
−

)
=: Λ̂2,

where the operators

Λ̂+ =
√

1
4∆2 + |g|2aa+,

Λ̂− =
√

1
4∆2 + |g|2a+a

(15.81)

satisfy

Λ̂+|n〉 =
√

1
4∆2 + |g|2(n + 1) |n〉 =: Λn+1|n〉,

Λ̂−|n〉 =
√

1
4∆2 + |g|2n |n〉 =: Λn|n〉.

(15.82)

Then (
1
�
Ĥ

)2n

= Λ̂2n =
(

Λ̂2n
+ 0
0 Λ̂2n

−

)
,(

1
�
Ĥ

)2n+1

=
1
�
ĤΛ̂2n,

and with eq. (15.77)

UI(t) = (15.83)
[
cos(Λ̂+t) − i

∆
2

1
Λ̂+

sin(Λ̂+t)
]

e
1
2 i∆t −iga

1
Λ̂−

sin(Λ̂−t) e
1
2 i∆t

−ig∗a+ 1
Λ̂+

sin(Λ̂+t) e−
1
2 i∆t

[
cos(Λ̂−t) + i

∆
2

1
Λ̂−

sin(Λ̂−t)
]

e−
1
2 i∆t

.
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As a first check, we verify the stability of the ground state

|0, 2〉 = |0〉 ⊗
(

0
1

)
,

i.e.

UI(t)|0, 2〉 = [cos( 1
2∆t) + i sin( 1

2∆t)] e−
1
2 i∆t|0, 2〉 = |0, 2〉. (15.84)

Writing the state at time t as

|ψ(t)〉 =
∞∑

n=0

[cn−1,1(t)|n−1, 1〉 + cn,2(t)|n, 2〉], (15.85)

with c−1,1 = 0 by definition, we find that eq. (15.83) is equivalent to(
cn−1,1(t)
cn,2(t)

)
=

(
a b

−b∗ a∗

) (
cn−1,1(0)
cn,2(0)

)
, (15.86)

with

a = [cos(Λnt) − i(∆/2Λn) sin(Λnt)] e
1
2 i∆t,

b = −ig
√

n (1/Λn) sin(Λnt) e
1
2 i∆t.

and where Λn is defined in eq. (15.73).
One immediate consequence of eq. (15.84) or (15.86) is spontaneous emission. The state

|0, 1〉 consisting of no photon and the atom in the excited state is not stable. Rather, for
c0,1(0) = 1 and c1,2(0) = 0,

c0,1(t) = [cos(Λ1t) − i(∆/2Λ1) sin(Λ1t)] e
1
2 i∆t,

c1,2(t) = −ig∗(1/Λ1) sin(Λ1t) e−
1
2 i∆t.

(15.87)

With eq. (15.86), it is an easy task to calculate the occupation probabilities from the initial
values:

wn,1(t) = |cn,1(t)|2 and wn,2(t) = |cn,2(t)|2. (15.88)

The probabilities for the occupation of the atomic states are then

w1(t) =
∞∑

n=0

wn,1(t) and w2(t) =
∞∑

n=0

wn,2(t), (15.89)

whereas the probability for the presence of n photons is

wp
n(t) = wn,1(t) + wn,2(t). (15.90)



306 15 Interaction of radiation and matter

To simplify our expressions, we assume that at time t = 0 the atom is in the excited state;
hence wn,2(0) = 0. Then

wn,1(t) =
(

cos2(Λn+1t) +
∆2

4Λ2
n+1

sin2(Λn+1t)
)

wn,1(0),

wn,2(t) =
|g|2n
Λ2

n

sin2(Λnt)wn−1,1(0).
(15.91)

One checks that in fact

w1(t) + w2(t) = 1, (15.92)

and after a short calculation one obtains

W (t) := w1(t) − w2(t) = 1 − 2w2(t)

= 1 − 2
∞∑

n=0

|g|2(n + 1)
Λ2

n+1

sin2(Λn+1t)wn,1(0)

=
∞∑

n=0

1
Λ2

n+1

[14∆2 + |g|2(n + 1) cos(2Λn+1t)]wn,1(0). (15.93)

The quantity W (t) = w1(t) − w2(t) is called occupation inversion (see fig. 15.4).

Figure 15.4: Occupation inversion as a function of time.

In the quasi-classical treatment of section 15.1, we found a periodic behavior for W (t).
In the Jaynes–Cummings model, W (t) is only periodic if the initial distribution wn,1 has a
sharp photon number n0. If, on the other hand, wn,1 is a distribution with mean value 〈N〉 and
variance σN , the time behavior of W (t) will be totally different, and will coincide with what
is actually observed.

First, W (0) = 1. Now, W (t) contains many periodic components with different frequen-
cies 2Λn+1. The fast oscillations with typical frequency 2Λ〈N〉+1 will fall out of phase after
some time has elapsed. After a collapse time TC, the inversion will be very small due to de-
structive interference of the different periodic modes. The uncertainty relation between time
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and frequency allows one to estimate the collapse time TC as

TC =
1

2(Λ〈N〉+1+σN
− Λ〈N〉+1−σN

)
≈ 1

4σN (∂Λn/∂n)
∣∣
〈N〉+1

. (15.94)

After an even longer time TR, the periodic oscillations, which after all have discrete frequen-
cies, will be in phase again, and the inversion will again assume a larger value. This phenom-
enon is called inversion revival. Collapses and revivals will alternate periodically. Revival is a
purely quantum-mechanical effect of the discreteness of the photon number. A good estimate
of the revival time is

2TR(Λ〈N〉+1 − Λ〈N〉) = 2TR
∂Λn

∂n

∣∣∣∣
〈N〉

= 2π. (15.95)

With Λn from eq. (15.73)

∂Λn

∂n
=

|g|2
2Λn

(15.96)

and

TR = 2π
Λ〈N〉
|g|2 =

2π

|g|

√
∆2

4|g|2 + 〈N〉,

TC =
Λ〈N〉+1

2|g|2σN
=

√
(∆2/4|g|2) + 〈N〉 + 1

2σN |g| .

(15.97)

If the initial distribution is Poissonian with σN = 〈N〉1/2, for 〈N〉 � 1 one obtains

TC =

√
1 +

∆2

4|g|2〈N〉
1

2|g| . (15.98)

We conclude this section with a short discussion on the interesting limit of strong detuning:

∆ � |g|
√

〈N〉. (15.99)

Then

Λn =
∆
2

+
|g|2n
∆

+ O

(
1

∆2

)
.

A glance at eq. (15.83) or (15.86) shows that to leading order

lim
∆→∞

UI(t) = 1. (15.100)

Not surprisingly, transitions are suppressed for very strong detuning. In next-to-leading order,
we can approximately insert into eq. (15.83):(

cos(Λ̂+t) − i
∆

2Λ̂+

sin(Λ̂+t)
)

e
1
2 i∆t ≈ exp

(
−i

|g|2
∆

(a+a + 1)t
)

,(
cos(Λ̂−t) + i

∆
2Λ̂−

sin(Λ̂−t)
)

e−
1
2 i∆t ≈ exp

(
i
|g|2
∆

a+at

)
,

(15.101)

whereas the off-diagonal elements are still negligible.
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With these approximations, UI(t) becomes the time evolution operator for the effective
Hamiltonian

Heff = �
|g|2
∆

(σ3a
+a + σ11), (15.102)

and UI(t) will produce slow variations of the relative phases of the excited states. This effect
is exploited in a variety of experimental setups.

15.5 The micromaser

Micromasers and microlasers owe their existence to the spectacular progress in the construc-
tion of electromagnetic resonators. The decay time of the electromagnetic field is much longer
than the interaction time with atoms inside the resonator, which means that photons can be ab-
sorbed and re-emitted many times before they get lost by dissipation.

The micromaser is the first and most advanced example of such a device. A microwave
field in a cavity is tuned to be in resonance with a transition between two Rydberg states of the
hydrogen atom. Rydberg states are excited states of the hydrogen atom with large principal
quantum numbers. They are ideally suited for experimentation in this field for at least three
reasons:

1. The transition frequencies between Rydberg states lie in the experimentally convenient
microwave range. For instance, the transition frequency between the frequently employed
levels 63 p3/2 and 61 d3/2 is 21.5 GHz.

2. The strength of the interaction with the electromagnetic field is proportional to the transi-
tion dipole moments, which are excessively large for Rydberg states. The diameter of an
excited hydrogen atom and its transition dipole elements are proportional to n2, which
leads to transition probabilities of the order of n4. A few photons will already suffice to
saturate a transition.

3. Rydberg atoms can conveniently be prepared and detected by electric field ionization. If
a homogeneous electric field E is applied to a hydrogen atom, then the Coulomb field,
in which the electron of the atom is bound, is deformed and lowered in the direction
−E. As a result, atomic levels that are bound states without the field E become levels in
the continuum, and formerly bound electrons are pulled out of the atom. If the field E is
increased, weakly bound electrons with higher principal quantum numbers n are liberated
first and more strongly bound electrons later. Alternatively, by properly adjusting the
strength of E, one can liberate electrons in states with n > n0 for any given n0, whereas
electrons with n ≤ n0 remain bound.

Working with a cavity in the microwave regime also brings about a technical difficulty:
disturbing thermal photons have to be suppressed by cooling the device to very low tempera-
tures. Inserting numbers into Planck’s formula

n̄th =
1

e�ω/kT − 1
, (15.103)
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one finds n̄th = 1.5 at T = 2 K and ω = 21.5 GHz, still too high for ambitious purposes.
Nowadays, T = 0.3 K and n̄ = 0.054 have been achieved.

The principle of a micromaser is simple. A ray of hydrogen atoms prepared in one of two
Rydberg states is velocity-selected and injected into a cooled microwave cavity tuned to the
transition frequency between the two atomic levels. Inside the cavity, the atoms can emit or
absorb a photon by interacting with the electromagnetic field. The atoms pass through the
cavity and, after they leave it, their state of excitation is measured by two electrostatic field
ionization detectors, the first one tuned to the upper level, and the second one tuned to the
lower level.

Long decay times of several seconds can be achieved for the field in the resonator, and the
intensity for the atomic beam can be so low that on average less than one atom is present in
the cavity.

If the atoms enter the cavity in the excited state and if the cavity field is initially in the
ground state, then the atoms traversing the cavity will deposit their energy as photons in the
cavity until, due to the inevitable losses, some saturation point is reached.

The device is a minimal realization of a laser (or rather maser) arrangement. An electro-
magnetic field is built up by stimulated emission of photons by a small number of excited
atoms. As opposed to an ordinary laser, the radiation in the cavity cannot be coupled out, be-
cause this would spoil the quality of the resonator. The atoms traversing the cavity play a dual
role, both producing and detecting the field in the cavity. The photon statistics in the cavity is
very interesting and shows many non-classical features.

The theory of the micromaser uses the Jaynes–Cummings model described in the previous
section. The velocity-selected atoms spend a controllable time τ in the cavity. During this
time-span, the dynamics of the two-level system in interaction with the cavity field is well
described by the Jaynes–Cummings Hamiltonian of eq. (15.25).

The equation of motion for the density operator is of Lindblad type and given by eq.
(15.40), where H is the Jaynes–Cummings Hamiltonian, and dissipation by photon losses is
accounted for by an additional term

Lρ = −1
2c(n̄th + 1)(a+aρ + ρa+a − 2aρa+)

− 1
2cn̄th(aa+ρ + ρaa+ − 2a+ρa). (15.104)

Phenomena like collapse and revival of the occupation inversion can be observed in the micro-
maser. In the next section, we shall describe how the micromaser may be used for “quantum
state engineering”, the preparation of a given state of the electromagnetic field. Other applica-
tions for experiments on the foundations of quantum theory will be described in chapter 16.

Recently, also microlasers working in the regime of visible light have become feasible.
Two different arrangements are currently in use. One of them takes profit from the fact that
mirrors of extremely high reflectivity, formerly classified and reserved for military purposes,
have become available. This allows the construction of optical resonators of sufficiently high
quality for a microlaser. The difficulty of weaker coupling due to smaller transition dipole
elements in the optical regime is overcome by making the spatial dimensions of the resonator
very small. A glance at eqs. (13.42) and (15.10) will reveal that this increases the coupling
strength. Fortunately, thermal photons are less of a problem in the optical regime and the
requirements for cooling are very mild.
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Another arrangement uses modes of the light field propagating along the inside of a glass
sphere, which can be excited by a laser. They are called “whispering gallery modes” in analogy
with the famous acoustic phenomenon in the gallery of St. Paul’s Cathedral in London.

15.6 Quantum state engineering

In this section, we shall describe techniques for the measurement and preparation of atoms and
electromagnetic states. We concentrate on the state space of the Jaynes–Cummings model: a
two-state atomic system and a one-mode electromagnetic field. Measurement and preparation
are intimately related in quantum theory, because every measurement implies a projection on
a state possessing the measured value with certainty.

Let us first turn to two-state atomic systems. The eigenstates |ϕ1〉 and |ϕ2〉 of the free
Hamiltonian H0 are easily prepared by an energy measurement. The problem is the prepara-
tion of an arbitrary superposition:

|ϕ〉 = c1|ϕ1〉 + c2|ϕ2〉, |c1|2 + |c2|2 = 1. (15.105)

This can be achieved by first preparing the system in the state |ϕ1〉 and then applying an
appropriate unitary transformation. Such a transformation can, for instance, be realized by
the time evolution operator of eq. (15.34) of the quasi-classical Jaynes–Cummings model.
In practice, the system initially in the state |ϕ1〉 is brought into interaction with a classical
external wave field for a controlled time interval t0. By adjusting t0 and the parameters g,
α and ∆ properly, arbitrary values of c1 and c2 can be obtained. The relative phase between
c1 and c2 can also be changed by allowing the system to evolve under the free Hamiltonian
operator H0. Preparation and measurement of states of the electromagnetic field are more
difficult because it is harder to exert controlled influences on them. In chapter 14, we saw how
homodyne detection can be applied for state measurements.

The micromaser may be used for both measuring and preparing the field in the cavity. A
given cavity field can be analyzed by injecting atoms into it, allowing them to interact with the
field for a controlled time, and then measuring the state of the atoms. In the time dependence
of the inversion, collapses and revivals can be seen, and eq. (15.93) teaches us that the photon
number statistics can be read off from the Fourier transform of the inversion function W (t).

Electric field states of the cavity with given photon number n can be prepared in the
micromaser in the following way. Individual excited atoms are passed through the resonator,
which is initially in its zero-photon ground state. The excitation level of the atoms leaving
the resonator is measured, and, every time an atom leaves the cavity in a de-excited state, an
additional photon has been deposited in the resonator. If photon losses by dissipation can be
neglected, states of given photon number have been prepared.

The deposition of photons can be discussed quantitatively in the Jaynes–Cummings model.
For zero detuning ∆ = 0, eq. (15.91) gives

wn,2(t0) = sin2(g
√

n t0) (15.106)

for the probability wn,2(t0) that an excited atom raises the photon number in the oscillator
from n − 1 to n within an interaction time t0.
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Equation (15.106) shows that an n-photon state can be prepared even without measuring
the excitation state of the outgoing atoms. One just has to fix t0 such that

sin[g
√

(n + 1) t0] = 0. (15.107)

Then it is not possible to raise the photon number from n to n + 1. If eq. (15.107) is fulfilled,
one says that the maser is in an upwards trapping state. In this case, one just injects excited
atoms into the micromaser with the cavity field initially in the ground state. Some atoms will
increase the photon number, some of them will not, but the increase will stop when the photon
number n is reached.

There are also downwards trapped states of the laser, in which a de-excited atom cannot
pick up a photon. They provide another mechanism for number state preparation.

A more ambitious aim is the preparation of a state

|ψ〉 =
N∑

n=0

d(N)
n |n〉,

N∑
n=0

|d(N)
n |2 = 1, (15.108)

of the resonator field, which is an arbitrary superposition of number states up to photon num-
ber N .

The mechanism we are going to describe makes essential use of the fact that the eigenstates
of the Jaynes–Cummings model as given by the equations following eq. (15.72) do not have
sharp values of photon and atomic excitation number but show entanglement between atomic
and electromagnetic quantum numbers. Moreover, a product state |n, i〉 (n = 0, 1, . . .; i =
1, 2) will evolve into an entangled state.

Consider now a general state

|Ψ〉 =
2∑

i=1

∞∑
n=0

cn,i|n, i〉 (15.109)

in the Jaynes–Cummings model. If a measurement of the atomic state gives the result |ϕ〉 =
α1|ϕ1〉 + α2|ϕ2〉, the state |Ψ〉 of the field–atom system is reduced to a state

|ψ〉 =
∞∑

n=0

(α∗
1cn1 + α∗

2cn2)|n〉 (15.110)

of the cavity field. Now, |ψ〉 is a coherent superposition of photon number states. The strategy
for photonic state preparation is now the following.

Let the cavity be initially in its ground state. An atom is injected in a superposition state
|ϕ〉(1) = α

(1)
1 |ϕ1〉+α

(1)
2 |ϕ2〉 and interacts with the cavity for a time t1. When the atom leaves

the cavity, its excitation state is measured. When the atom is in the upper state, the cavity will
still be in its ground state; when it is in the lower state, the cavity will be in a superposition of
its ground state |0〉 and its first excited state |1〉. In the latter case, a second atom is injected in
a different superposition state, interacts for a time t2, and is detected after leaving the cavity.
If this second atom is found in the lower state, one may proceed; otherwise the run will be
rejected and one starts again from the beginning.
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Proceeding in this way, after N steps the state of the cavity will be a superposition of the
first N excited states like eq. (15.108). By choosing the values ti, α

(i)
1 , and α

(i)
2 properly, one

can give the coefficients d
(N)
n in eq. (15.108) the desired values.

Let us follow these steps analytically by using eq. (15.86) for the case ∆ = 0 and g > 0.
After time t, the states |n, 1〉 and |n, 2〉 will have evolved into

|n, 1〉 → cos
[
g
√

(n + 1) t
] |n, 1〉 − i sin

[
g
√

(n + 1) t
] |n+1, 2〉

= Cn+1(t) |n, 1〉 + Sn+1(t) |n+1, 2〉,
|n, 2〉 → −i sin

[
g
√

n t
] |n−1, 1〉 + cos

[
g
√

n t
] |n, 2〉

= Sn(t) |n−1, 1〉 + Cn(t) |n, 2〉.

(15.111)

Now, in the first step we have

α
(1)
1 |0, 1〉+α

(1)
2 |0, 2〉 → α

(1)
1 C1(t1)|0, 1〉+α

(1)
1 S1(t1)|1, 2〉+α

(1)
2 C0(t1)|0, 2〉. (15.112)

After measurement and projection onto |ϕ2〉, this reduces to

|ψ〉(1) = α
(1)
1 S1(t1)|1〉 + α

(1)
2 |0〉 = d

(1)
0 |0〉 + d

(1)
1 |1〉. (15.113)

One notes that, after normalization, arbitrary superpositions of |0〉 and |1〉 can be produced.
Let the cavity state after the (N − 1)th step be given by

|ψ〉(N−1) =
N−1∑
n=0

d(N−1)
n |n〉. (15.114)

Time evolution yields

|ψ〉(N−1) ⊗ (α(N)
1 |ϕ1〉 + α

(N)
2 |ϕ2〉)

→
N−1∑
n=0

d(N−1)
n

{
α

(N)
1 [Cn+1(tN )|n, 1〉 + Sn+1(tN )|n+1, 2〉]

+ α
(N)
2 [Sn(tN )|n−1, 1〉 + Cn(tN )|n, 2〉]}, (15.115)

and, after projection onto |ϕ2〉,

|ψ〉(N) =
N−1∑
n=0

d(N−1)
n

{
α

(N)
1 Sn+1(tN )|n+1〉 + α

(N)
2 Cn(tN )|n〉}

=
N∑

n=0

d(N)
n |n〉. (15.116)

It is not difficult to see that, for suitable d
(N−1)
n , α

(N)
1,2 , and tN , arbitrary superpositions

(eq. (15.108)) can be produced.
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We conclude this section with an example of state preparation, in which the Jaynes–
Cummings model with strong detuning is employed. We start out from a state

|Ψ〉 =
1√
2

∞∑
n=0

cn|n〉 ⊗ (|ϕ1〉 + |ϕ2〉) =
1√
2

∞∑
n=0

cn(|n, 1〉 + |n, 2〉). (15.117)

Applying the time evolution of eq. (15.102) of the Jaynes–Cummings model with large detun-
ing yields

|Ψ〉 → 1√
2

∞∑
n=0

cn

[
exp

(
−i

|g|2
∆

(n + 1)t
)
|n, 1〉 + exp

(
i
|g|2
∆

nt

)
|n, 2〉

]
. (15.118)

Projection of the atomic state onto

|ϕ〉 =
1√
2

[
exp

(
−i

|g|2
∆

t

)
|ϕ1〉 + |ϕ2〉

]
(15.119)

yields the photonic state

|ψ〉 =
1
2

∑
n

cn

[
exp

(
−i

|g|2
∆

nt

)
|n〉 + exp

(
i
|g|2
∆

nt

)
|n〉

]
. (15.120)

Choosing

cn =
βn

√
n!

e−
1
2 |β|2

corresponds to an initial coherent state of the electromagnetic field:

|Ψ〉 =
1√
2
|β〉 ⊗ (|ϕ1〉 + |ϕ2〉). (15.121)

Then the emerging state |ψ〉 of eq. (15.120) will be

|ψ〉 = 1
2 (|β eiδt〉 + |β e−iδt〉), (15.122)

with δ = |g|2/∆. This is a superposition of two coherent states. Now, coherent states are as
close as possible to classical states, and the superposition comes close to the superposition of
classical states. In analogy to the famous “Schrödinger’s cat” paradox, where a superposition
of two states of a cat, one dead and one alive, is considered, the states of eq. (15.122) are
called Schrödinger cat states.

15.7 The Paul trap

Nowadays, experiments with individual atoms have become feasible. This progress was made
possible by the construction of traps that confine single atoms to a small volume where they
can stay and be observed for weeks and months while their interaction with radiation can be
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studied and quantum transitions can be observed in detail. Ions are usually stored by means
of electric fields acting on their charge, whereas neutral atoms are stored in magnetic fields,
which act on their magnetic moment.

For trapping and observing an atom or ion, it is desirable to reduce its kinetic energy. Major
progress has been made in this direction with laser cooling, a technique that allows the tem-
perature in the trap to be reduced to a few microkelvins and even provides another mechanism
to confine neutral particles. The principle of laser cooling is quite simple. Electromagnetic
radiation is directed into the trap at a frequency slightly below the resonance frequency of
the confined particles at rest. An outgoing particle experiences Doppler-shifted radiation and
can be excited by absorbing a photon from the radiation. Thereby, it obtains an inwards di-
rected momentum. Subsequently, the particle will be de-excited by radiating off a photon into
a random direction. On average, the net effect of absorption and emission will be an inwards
directed kick applied to the particle. In this way, a dramatic reduction of the momenta of the
particles in the trap and temperatures in the microkelvin range can be achieved. If, in addition,
the faster particles are allowed to escape from the trap by “evaporation”, temperatures in the
nanokelvin range are reached. For a large number of confined Bose particles, Bose–Einstein
condensation was observed.

The theoretical description of the confinement of a two-level atom or ion in a trap is closely
analogous to the Jaynes–Cummings model of sections 15.1 and 15.4.

We start out with a simple model and will apply refinements later. So, we assume that the
particle is confined by an isotropic oscillator potential with frequency ωR and treat the one-
mode electromagnetic field interacting with it as a classical field. The interaction with this
field is assumed to be a dipole interaction. The model Hamiltonian for this situation is given
by

H =
P 2

2M
+

Mω2
R

2
Q2 + 1

2�ωσ3 + Hint

= HCM + HAT + Hint = H0 + Hint,

(15.123)

where HCM describes the motion in the oscillator potential, and HAT the two levels of the
particle. For a homogeneous running classical light wave, the interaction Hamiltonian with
the classical field has the form

Hr
int = �

(
αgσ+ e−i(ωLt−k·Q) + α∗g∗σ− ei(ωLt−k·Q)

)
, (15.124)

and for a standing classical light wave we have

Hs
int = 2�g(ασ+ + α∗σ−) cos(ωLt) sin(k · Q), (15.125)

where ωL is the frequency of the classical (laser) radiation.
Introducing the creation and annihilation operators

b+ =
1√
2

(√
MωR

�
Q − i

1√
MωR�

P

)
,

b =
1√
2

(√
MωR

�
Q + i

1√
MωR�

P

)
,

(15.126)
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as in section 13.1, the Hamiltonian assumes the form

H = �ωR(b+b + 1
2 ) + 1

2�ωσ3 + Hint, (15.127)

with

Hr
int = �

{
αgσ+ exp(−iωLt) exp

[
i
√

�

2MωR
k · (b + b+)

]

+ α∗g∗σ− exp(iωLt) exp

[
−i

√
�

2MωR
k · (b + b+)

]}
(15.128)

or

Hs
int = 2�g(ασ+ + α∗σ−) cos(ωLt) sin

(√
�

2MωR
k · (b + b+)

)
. (15.129)

The quantity

η =
√

�

2MωR
k (15.130)

is called the Lamb–Dicke parameter.
The typical amplitude d of the harmonic oscillator in low states of excitation is of the order

of d ≈ √
�/(2MωR), and the Lamb–Dicke parameter is the ratio d/λ of the amplitude and

the wavelength of the electromagnetic radiation.
In the interaction picture, the interaction Hamiltonian HI = U+

0 HintU0 can be calculated
just like in section 15.1:

Hr
I = �

{
αgσ+ exp[i(ω − ωL)t] exp[iη(b e−iωRt + b+ eiωRt)] + h.c.

}
= �αgσ+ ei(ω−ωL)t D(iη eiωRt) + h.c., (15.131)

where D(iη eiωRt) is just the displacement operator of eq. (13.43). For the standing wave we
obtain

Hs
I = −i�g cos(ωLt)(ασ+ eiωt +α∗σ− e−iωt)

[
D(iη eiωRt)−D(−iη eiωRt)

]
. (15.132)

The form of Hr,s
I shows that atomic transitions are in general associated with both multiple

emission and absorption of vibration quanta, called phonons, which here play the role of the
photons in section 15.1.

At this level of generality, there is no place for a rotating wave approximation, yet. Some-
times, special approximation apply, which we spell out for the running wave case, leaving the
completely analogous case of the standing wave for the reader.

1. For small |η| 	 1, the so-called Lamb–Dicke approximation applies. Only the first two
terms of the exponential in eq. (15.131) are kept:

Hr
I ≈ �αgσ+ ei(ω−ωL)t

(
1 + iη · b e−iωRt + iη · b+ eiωRt

)
+ h.c. (15.133)
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Sometimes, a rotating wave approximation will apply, which consists in keeping only the
interaction term with the slowest oscillation. If |ω−ωL−ωR| is minimal, the rotating wave
approximation gives the Jaynes–Cummings model (with phonons rather than photons):

Hr
I ≈ �αgσ+η · b ei(ω−ωL−ωR)t + h.c. (15.134)

If, on the other hand, |ω − ωL + ωR| is minimal, the resulting interaction Hamiltonian is

Hr
I ≈ �αgσ+η · b+ ei(ω−ωL+ωR)t + h.c. (15.135)

This is the anti Jaynes–Cummings model, which is also exactly solvable. The conserved
quantity that guarantees solvability is the difference

C−1 := −1
2σ3 + b+b (15.136)

between the atomic and phononic excitation numbers. An excitation of the atom is asso-
ciated with the emission of a phonon.

2. In the interaction Hamiltonian (15.131) it may also be a good approximation to keep the
term with the slowest variation. If, for some integer s, |ω − ωL − sωR| is minimal, we
obtain

Hr
I ≈ �αgσ+

(iη · b(+))|s|

|s|! ei(ω−ωL−sωR)t + h.c., (15.137)

where for positive s the annihilation operator b enters and for negative s the creation
operator b+ enters. This is the exactly solvable s-phonon Jaynes–Cummings model or
the s-photon anti Jaynes–Cummings model, where an atomic excitation is associated
with the absorption or emission of s phonons, respectively. The conserved quantity is

Cs = 1
2sσ3 + b+b. (15.138)

The Hamiltonian HCM of eq. (15.123) for the center-of-mass motion is unrealistic, because
an electrostatic or magnetostatic oscillator potential cannot exist. In fact, the potential V has
to obey Laplace’s equation

∆V =
(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
V = 0 (15.139)

and hence cannot have a minimum. Not all of its second derivatives can be positive. The
most general quadratic potential V with rotation symmetry about the 3-axis and fulfilling eq.
(15.139) is of the form

V = 1
2Mf(x2

1 + x2
2 − 2x2

3). (15.140)

For at least one direction, this is repulsive. The way to achieve confinement nevertheless is to
replace the constant f by a periodic function f(t) with f(t) = f(t+T ), which can change sign
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and will periodically interchange the attractive and repulsive directions. For the discussion of
this mechanism, we can treat the three directions separately and consider the equations:

ẍ1,2 + f(t)x1,2 = 0, ẍ3 − 2f(t)x3 = 0. (15.141)

The function f(t) is normally chosen to be of the form

f(t) = A + B cos(ωrf
t). (15.142)

The resulting equation is called Mathieu’s equation. The equation for x3 is obtained from the
equation for x1 by the replacements A → −2A and B → −2B.

Now, let ε1(t) and ε2(t) be any two solutions of the equation

ẍ + f(t)x = 0 (15.143)

with periodic f . Then ε1(t+T ) and ε2(t+T ) are also solutions and must be linear combina-
tions of ε1(t) and ε2(t):(

ε1(t+T )
ε2(t+T )

)
=

(
m11 m12

m21 m22

)(
ε1(t)
ε2(t)

)
. (15.144)

By a suitable choice of a basis of solutions, one can (generically) diagonalize the matrix in
eq. (15.144) and construct multiplicative solutions εµ1(t) and εµ2(t) with

εµ1,2(0) = 1 and εµ1,2(t+T ) = eiµ1,2T εµ1,2(t). (15.145)

Such multiplicative solutions are called Floquet solutions, and the quantities µ1,2 are the Flo-
quet exponents. If both Floquet exponents are real, the solution is stable; if one of them has
an imaginary part, an instability for t → ∞ will occur. For eq. (15.143) we have µ1 = −µ2,
because for any two solutions of eq. (15.143) we have

d
dt

[ε1(t)ε̇2(t) − ε2(t)ε̇1(t)] = 0, (15.146)

and inserting εµ1 and εµ2 gives

εµ1(t+T )ε̇µ2(t+T ) − εµ2(t+T )ε̇µ1(t+T )

= ei(µ1+µ2)T [εµ1(t)ε̇µ2(t) − εµ2(t)ε̇µ1(t)]
= εµ1(t)ε̇µ2(t) − εµ2(t)ε̇µ1(t). (15.147)

Moreover, if f(t) = f(−t), as for the choice in eq. (15.142), then, with εµ(0) = 1, we find

ε−µ(t) = εµ(−t). (15.148)

For real µ, which is the stable case of interest, we also have

ε−µ(t) = εµ(t)∗. (15.149)

Every Floquet solution can be written in the form

εµ(t) = eiµteµ(t), (15.150)
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with periodic eµ(t). Hence,

εµ(t) =
∞∑

n=−∞
cn ei(µ+n)t. (15.151)

If eqs. (15.148) and (15.149) are fulfilled, the coefficients cn are real and ε̇µ(0) is purely
imaginary.

The parameters A and B in eq. (15.142) can be chosen such that the solution of
eq. (15.141) is stable in all directions. In fact, eq. (15.143) with f from eq. (15.142) can
be written in the form

−ẍ − [ |B| + B cos(ωrf
t)]x = (A − |B|)x. (15.152)

One recognizes the Schrödinger equation in a periodic nowhere-positive potential, and the
stable regions correspond to the energy bands.

To perform the transition to the interaction picture for the Hamiltonian (15.123), with

HCM =
P

2M
+ M

f(t)
2

(Q2
1 + Q2

2) − Mf(t)Q2
3 (15.153)

instead of the simple oscillator Hamiltonian, we have to solve the equations of motion:

Q̇i(t) =
1
i�

[Qi(t), HCM], Ṗi(t) =
1
i�

[Pi(t), HCM]. (15.154)

It will suffice to treat only one component:

Q̇(t) =
P (t)
M

, Ṗ (t) + Mf(t)Q(t) = 0 (15.155)

or

P (t) = MQ̇(t), Q̈(t) + f(t)Q(t) = 0. (15.156)

These are the same equations as the classical equations of motion. The solution of eq. (15.156)
is best presented in terms of quadratures,

X1(t) =

√
MωR

�
Q(t), X2(t) =

1√
MωR�

P (t), (15.157)

and annihilation and creation operators,

b(t) = X1(t) + iX2(t), b+(t) = X1(t) − iX2(t). (15.158)

As opposed to eq. (15.123), the frequency ωR is not given by the Hamiltonian but rather an
arbitrary reference frequency that can be chosen for convenience. Changing ωR corresponds
to a Bogolyubov transformation. In terms of the quadratures, the equations of motion are

Ẍ1(t) + f(t)X1(t) = 0, X2(t) =
1

ωR
Ẋ1(t). (15.159)
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It is now easy to write down the solution of eq. (15.159) with the initial values X1(0) = X1

and X2(0) = X2. Let ε(t) be the solution of eq. (15.143) with the initial values

ε(0) = 1, ε̇(0) = iωR. (15.160)

Then

X1(t) = X1 Re ε(t) + X2 Im ε(t),

X2(t) = X1
Re ε̇(t)

ωR
+ X2

Im ε̇(t)
ωR

,
(15.161)

and

b(t) = 1
2b

[
ε∗(t) +

i
ωR

ε̇∗(t)
]

+ 1
2b+

[
ε(t) +

i
ωR

ε̇(t)
]

,

b+(t) = 1
2b+

[
ε(t) − i

ωR
ε̇(t)

]
+ 1

2b

[
ε∗(t) − i

ωR
ε̇∗(t)

]
.

(15.162)

In particular,

b(t) + b+(t) = bε∗(t) + b+ε(t). (15.163)

By choosing iωR = ε̇µ(0), one can achieve that the solution ε is a Floquet solution εµ.
The commutation relations

[X1(t), X2(t)] = i, [b(t), b+(t)] = 1 (15.164)

are a direct consequence of eq. (15.146).
Using the results of section 13.2 we see that the time evolution is given by a combination,

R(θ1(t))B(r(t))R(θ2(t)), (15.165)

of phase space rotations and Bogolyubov transformations.
The interaction Hamiltonian can now be immediately written down as

Hr
I = �αgσ+ ei(ω−ωL)tD(iηε(t)),

Hs
I = �αg cos(ωLt)

(
σ+ eiωt + σ− e−iωt

)[
D(iηε(t)) − D(−iηε(t))

]
.

(15.166)

Comparing with eqs. (15.131) and (15.132), we see that the only change from the simple to the
time-dependent oscillator is the substitution eiωRt → ε(t). All the subsequent approximations
can be performed in complete analogy. One only has to keep in mind that, in searching for the
lowest frequency terms, the contribution of the Floquet exponent µ also has to be considered.

The simple time-independent oscillator potential in eq. (15.123) may be considered as an
effective time-averaged approximation of the more realistic time-dependent confining poten-
tial.
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15.8 Motion of a two-level atom in a quantized light field

In the previous section, we discussed the quantum-mechanical motion of an atom or ion in
a confining classical field. Now the quantum mechanics of the center-of-mass motion of an
atom in the quantized field of an electromagnetic wave will be considered. The transition to
a classical wave field will be straightforward. The electromagnetic field will interact with the
atom and exert a force on it because the atom can be excited by the absorption of photons.
We simplify our discussion by taking a one-mode electric wave field in resonance with the
transition frequency of a two-level atom. The resulting model will be a slight generalization
of the Jaynes–Cummings model. The structure of the Hamiltonian in the Heisenberg picture
will be

H = �Ωa+a + 1
2�ωσ3 +

P 2

2M
+ D · E(Q). (15.167)

The new term as compared to eqs. (15.3) and (15.7) is the kinetic energy term P 2/2M of the
center-of-mass motion of the atom. Here D is the dipole operator of the atom, and, in contrast
to eq. (15.8), the atom is not assumed to be in a fixed position. So, the electric field E has to
be taken at the position Q of the center of mass of the atom.

Expanding the field E into creation and annihilation operators, and also applying the ro-
tating phase approximation, we obtain

H = �Ωa+a + 1
2�ωσ3 +

P 2

2M
+ �g(Q)σ+a + �g∗(Q)σ−a+

= �Ωa+a + 1
2�ωσ3 + Hint. (15.168)

This Hamiltonian differs from the Jaynes–Cummings Hamiltonian in eq. (15.59) in two re-
spects: first, the kinetic energy of the atom contributes; and secondly, the coupling,

�g(Q) = i
√

�Ω
2ε0

u(Q)〈ϕ1|D|ϕ2〉, (15.169)

depends on the position of the atom. The position dependence is given by the shape of the
mode function u(Q). For a standing wave, u(Q) will have a constant, position-independent
phase, and g(Q) can be made real by a simple rotation of a and a+. In the following, and for
simplicity, we shall assume g(Q) to be real. The total excitation degree C = a+a + 1

2σ3 is
still conserved. The transition to the interaction picture is now readily performed. Assuming
∆ = ω − Ω = 0, we obtain

HI =
P 2

2M
+ �g(Q)(σ+a + σ−a+). (15.170)

Note that we have lumped the kinetic energy into the interaction part. The evolution equation,

i�
d
dt

|Ψ(t)〉 = HI|Ψ(t)〉, (15.171)

in the interaction picture will be written in the basis

{|n〉 ⊗ |ϕi〉 ⊗ |x〉}, n = 0, 1, 2, . . . , i = 1, 2, x ∈ R
3 (15.172)
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of the Hilbert space H of the system, where, as before, n and i describe the state of the wave
field and the excitation state of the atom, respectively, and |x〉 is an eigenstate of the position
operator Q. Writing |n, i, x〉 for |n〉 ⊗ |ϕi〉 ⊗ |x〉, the state vector |Ψ(t)〉 will be of the form

|Ψ(t)〉 =
2∑

j=1

∞∑
m=0

∫
d3x Φm,j(x′, t)|m, j, x′〉, (15.173)

and eq. (15.171) will turn into

i�
d
dt

〈n, i, x|Ψ(t)〉 = 〈n, i, x|HI|Ψ(t)〉 (15.174)

or

i�
d
dt

Φn,1(x, t) = − �
2

2M
∆Φn,1 + �

√
(n + 1) g(x)Φn+1,2(x, t),

i�
d
dt

Φn,2(x, t) = − �
2

2M
∆Φn,2 + �

√
n g(x)Φn−1,1(x, t).

(15.175)

Here ∆ is, of course, the Laplace operator. Exploiting the real-valuedness of g(x), we can
decouple the system of eq. (15.175) by introducing

Φ±
n (x, t) = Φn−1,1(x, t) ± Φn,2(x, t) (15.176)

and obtain

i�
d
dt

Φ±
n (x, t) = − �

2

2M
∆Φ±

n ± �
√

n g(x)Φ±
n (x, t). (15.177)

Equation (15.177) is a Schrödinger equation for the position wave functions Φ±
n (x, t) of the

atom. The potential term �
√

n g(x) is determined by the shape of the mode function of the
wave field. As is to be expected, the potential is proportional to

√
n and, hence, to the expecta-

tion value of the amplitude of the electromagnetic field. The classical limit for the electromag-
netic field is obtained by simply replacing n and n ± 1 by a fixed large value N proportional
to the intensity of the classical field. In the classical wave field, the atoms will experience a
force proportional to ∇g(x).

Equation (15.177) is fundamental for any discussion of the interaction of matter with elec-
tromagnetic wave fields. For a treatment of laser cooling, the leakage of the electromagnetic
field into different modes has to be represented by a loss term in the equation of motion for
the density operator ρ.

Equation (15.177) is also the starting point for the rapidly developing field of atom optics.
It is a wave equation for the Schrödinger amplitude of the atom similar to the wave equation
for the electromagnetic field in a diffractive medium. The quantity

√
n g(x) is in close analogy

to the index of refraction.
By suitably shaping the wave field mode function u(x), one can construct mirrors and

beam splitters for atomic rays. With a mode function u(x) periodic in the 3-direction, an
atomic Fabry–Perot interferometer can be constructed. Atomic beam splitters can be used to
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build atomic Mach–Zehnder interferometers and eight-port interferometers. Atom interferom-
eters have the perspective to achieve even better resolution than optical interferometers. Note
that, in atom optics, light and matter have exchanged their roles: in light optics, matter is used
for shaping light wave fields, while in atom optics, matter wave fields are manipulated with
light.



16 Quantum optics and fundamental quantum theory

In quantum optics, experiments with single photons and atoms have become feasible. This
opens the way for direct tests of basic features of quantum theory, which until recently only
enjoyed the status of “Gedanken” experiments. Atomic transitions can be monitored, the mea-
surement process can be investigated, and entanglement correlations can be observed in detail.
Quantum computers are one of many spectacular applications in sight. They represent the ul-
timate state of miniaturization, where the components of a computer are of atomic size. Novel
quantum algorithms may speed up certain calculations, like factorization into prime numbers,
dramatically beyond the limits of normal computation.

16.1 Quantum entanglement

Entangled quantum states give rise to particularly drastic genuinely quantum-theoretical phe-
nomena. We have met entanglement already on several occasions, for instance in connection
with the Jaynes–Cummings model. This section is devoted to a more systematic treatment of
entanglement.

Let us assume that the Hilbert space H of a quantum system Σ is the tensor product of two
Hilbert spaces H1 and H2:

H = H1 ⊗H2. (16.1)

Such a tensor product decomposition will be natural if Σ is composed of two subsystems Σ1

and Σ2 with Hilbert spaces H1 and H2, respectively. A tensor product decomposition also
arises if the system has independent commuting degrees of freedom, such as excitation and
center-of-mass motion of an atom.

A state |Ψ〉 in H with

|Ψ〉 = |ϕ〉 ⊗ |ψ〉 and |ϕ〉 ∈ H1, |ψ〉 ∈ H2 (16.2)

is called a product state or a decomposable state. Generally, states in H are not product states
but only linear combinations of product states, so-called entangled states. Every state in H
can be represented as a superposition of product states. Let {|ϕi〉}i∈I and {|ψj〉}j∈J be or-
thonormal bases of H1 and H2, respectively. Then {|ϕi〉 ⊗ |ψj〉}i∈I, j∈J is an orthonormal
basis of H, and every vector in H can be written as

|Ψ〉 =
∑
i,j

cij |ϕi〉 ⊗ |ψj〉. (16.3)
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Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40429-5



324 16 Quantum optics and fundamental quantum theory

Notice that a state can be called “entangled” or “decomposable” only with respect to a given
tensor product decomposition (eq. (16.1)).

If A is an observable on H1 and B is an observable on H2, we can define a product
observable A ⊗ B by

(A ⊗ B)|Ψ〉 =
∑
i,j

cijA|ϕi〉 ⊗ B|ψj〉. (16.4)

Again, we can distinguish between decomposable and non-decomposable, entangled observ-
ables with respect to the tensor product decomposition (eq. (16.1)).

A mixed state on H = H1 ⊗H2 is given by a density operator ρ on H. This ρ is called a
product state if

ρ = ρ1 ⊗ ρ2, (16.5)

where ρ1 and ρ2 are density operators on H1 and H2, respectively, and otherwise it is called
an entangled state. The partial traces Tr1 and Tr2 with respect to the factors H1 and H2 are
uniquely defined by the properties

Tr1(A ⊗ B) = (TrH1A)B, Tr2(A ⊗ B) = A(TrH2B). (16.6)

For

C =
∑

i,j,k,r

cikjr|ϕi〉 ⊗ |ψk〉〈ϕj| ⊗ 〈ψr|, (16.7)

we have

Tr1 C =
∑
i,k,r

cikir|ψk〉〈ψr|, Tr2 C =
∑
i,j,k

cikjk|ϕi〉〈ϕj |. (16.8)

Obviously, we have

Tr1 Tr2 C = Tr2 Tr1 C =
∑
i,k

cikik = Tr C.

If ρ is a density operator on H, then Tr2 ρ and Tr1 ρ are density operators on H1 and H2,
respectively. They are said to arise from ρ by reduction to H1 and H2.

Let us now consider in detail the simplest case of two-dimensional Hilbert spaces H1 and
H2 with bases {|ϕ1〉, |ϕ2〉} and {|ψ1〉, |ψ2〉}. The space H = H1 ⊗ H2 is four-dimensional
and has an orthonormal base {|ϕi〉 ⊗ |ψj〉}i,j=1,2. There exists another orthonormal basis of
H consisting of the following entangled states, the so-called Bell states.

|Φ1〉 =
1√
2
(|ϕ1〉 ⊗ |ψ2〉 − |ϕ2〉 ⊗ |ψ1〉),

|Φ2〉 =
1√
2
(|ϕ1〉 ⊗ |ψ2〉 + |ϕ2〉 ⊗ |ψ1〉),

|Φ3〉 =
1√
2
(|ϕ1〉 ⊗ |ψ1〉 − |ϕ2〉 ⊗ |ψ2〉),

|Φ4〉 =
1√
2
(|ϕ1〉 ⊗ |ψ1〉 + |ϕ2〉 ⊗ |ψ2〉).

(16.9)
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Consider the observables

A1 = |ϕ1〉〈ϕ1| − |ϕ2〉〈ϕ2|,
A2 = |ψ1〉〈ψ1| − |ψ2〉〈ψ2|,

(16.10)

on H1 and H2, which have |ϕ1〉 and |ψ1〉 as eigenstates with eigenvalue 1 and |ϕ2〉 and |ψ2〉
as eigenstates with eigenvalue −1. The Bell states are not eigenstates of A1⊗1 or 1⊗A2; but
if these observables are measured in a Bell state, there is a strict correlation of the outcomes
of the measurements. If and only if a measurement of A1 ⊗ 1 gives the result ±1, then a
measurement of 1 ⊗ A2 will also give ±1 for |Φ2〉 and |Φ4〉 with certainty, and ∓1 for |Φ1〉
and |Φ3〉.

This is a typical example of so-called entanglement correlations for measurements per-
taining to the subspaces H1 and H2, which occur if the measurements are applied to an entan-
gled state. These entanglement correlations are particularly striking if subsystems described
by H1 and H2 are spatially separated by a large distance. A measurement on one subsystem
will immediately have a bearing on the result of a measurement on the other subsystem. It is
highly implausible that this correlation is caused by an instantaneous interaction at a distance
between the two subsystems. This would violate the laws of relativity physics, and we shall
adopt for our following discussion the hypothesis of locality that such interactions are impos-
sible. Then we are forced to attribute the correlations to the entangled state itself and admit
interactionless correlations as a fundamental feature.

Before we proceed, we shall consider physical realizations of Bell states. First, let H1 and
H2 be the state spaces of two particles with spin 1/2, where only the spin variables of the
particles are considered. Taking the quantization axis in the 3-direction, |ϕ1〉 and |ϕ2〉 will be
given by

σ3|ϕ1,2〉 = ±|ϕ1,2〉, σ3 =
(

1 0
0 −1

)
,

and likewise for |ψ1〉 and |ψ2〉. The observable n ·σ = n1σ1 +n2σ2 +n3σ3, with n2 = 1, on
H1 will have the value +1 if the spin is oriented in the +n direction and −1 if the spin points
in the −n direction. With these assignments, the Bell state |Φ1〉 will be the singlet state and
the other three Bell states are triplet states of the two-spin system.

The next example is fundamental for quantum optics. Let the system consist of two pho-
tons of given momenta and let H1 and H2 be the two-dimensional Hilbert spaces of their
polarization degrees of freedom. For H1,2, let ex and ey be two vectors orthogonal to the
momentum of the photon, and let |x〉, |y〉 be the planar polarization states along the line given
by ex and ey , respectively. We have 〈x|y〉 = 0, and in the basis {|x〉, |y〉} the observable with
value +1 for |x〉 and −1 for |y〉 is given by

σ3 =
(

1 0
0 −1

)
.

States with oblique planar polarization in the directions (1/
√

2)(ex ± ey) are given by∣∣∣∣ 1√
2
(x ± y)

〉
=

1√
2

(|x〉 ± |y〉) , (16.11)



326 16 Quantum optics and fundamental quantum theory

and they are eigenstates of

σ1 =
(

0 1
1 0

)
.

States of right and left circular polarization are given by

|R〉 =
1√
2

(|x〉 + i|y〉) and |L〉 =
1√
2

(|x〉 − i|y〉) (16.12)

and are eigenstates of

σ2 =
(

0 −i
i 0

)
.

A linear polarization in the line given by n = (cos θ, sin θ) is measured by the operator(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
. (16.13)

The Bell states of eq. (16.9) assume the form

|Φ1〉 =
1√
2
(|R〉 ⊗ |L〉 − |L〉 ⊗ |R〉) =

1
i
√

2
(|x〉 ⊗ |y〉 − |y〉 ⊗ |x〉),

|Φ2〉 =
1√
2
(|R〉 ⊗ |L〉 + |L〉 ⊗ |R〉) =

1√
2
(|x〉 ⊗ |x〉 + |y〉 ⊗ |y〉),

|Φ3〉 =
1√
2
(|R〉 ⊗ |R〉 − |L〉 ⊗ |L〉) =

i√
2
(|x〉 ⊗ |y〉 + |y〉 ⊗ |x〉),

|Φ4〉 =
1√
2
(|R〉 ⊗ |R〉 + |L〉 ⊗ |L〉) =

1√
2
(|x〉 ⊗ |x〉 − |y〉 ⊗ |y〉).

(16.14)

The directions x and y can be replaced by any two orthogonal directions x′ and y′, and the
form of the Bell states will remain unchanged. The various states of polarization of a photon
can easily be transformed into each other with the devices described in chapter 12.

Bell states can nowadays be produced in a routine way. The first example were the photons
arising from the decay of positronium into two photons. They have energies in the γ-radiation
range of 0.5 MeV and are difficult to handle. Nowadays, entangled photon pairs are obtained
from downward conversion. This is the inverse process of frequency doubling as described
in chapter 6. A crystal with nonlinear optical properties converts photons of frequency ω into
photon pairs of frequency ω/2. Such photon pairs can be conveniently manipulated and used
for entanglement experiments.

We conclude this section by showing that instantaneous entanglement correlations cannot
be used to transmit signals with superluminal velocity. This, of course, strongly supports our
locality assumption. Consider any density matrix ρ on H = H1 ⊗H2 and let A and B be two
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observables on H1 and H2, respectively, with spectral decomposition

A =
∑

i

aiPi, B =
∑

j

bjQj ,

PiPj = δijPi, QiQj = δijQi, (16.15)∑
i

Pi = 1H1 ,
∑

j

Qj = 1H2 .

The observables A ⊗ 1 and 1 ⊗ B are commensurable and can be measured simultaneously.
The probability of measuring the pair (ai, bj) of values of A and B is given by

w
(1,2)
ij = Tr(Pi ⊗ Qj)ρ = Tr1(Pi) Tr2(1⊗ Qj)ρ = Tr2(Qj) Tr1(Pi ⊗ 1)ρ. (16.16)

If only A ⊗ 1 or 1⊗ B is measured, the probabilities for the result ai or bi are

w
(1)
i = Tr(Pi ⊗ 1)ρ = Tr1(Pi) Tr2(ρ),

w
(2)
j = Tr(1⊗ Qj)ρ = Tr2(Qj) Tr1(ρ).

(16.17)

From eq. (16.15) we see that

w
(1)
i =

∑
j

w
(1,2)
ij , w

(2)
j =

∑
i

w
(1,2)
ij . (16.18)

Imagine, now, that a measurement of B has yielded the result bj . The probability w
(1)
i|j that a

subsequent measurement of A will yield ai is given by

w
(1,2)
ij = w

(1)
i|j w

(2)
j . (16.19)

Evidently, we have∑
i

w
(1)
i|j = 1. (16.20)

The w
(1)
i|j may depend strongly on j, which just describes the entanglement correlations. If,

however, the outcome of the measurement of the observable B is unknown to an observer
measuring A, the observer will see the distribution

w
(1)
i =

∑
j

w
(1)
i|j w

(2)
j =

∑
j

w
(1,2)
ij = w

(1)
i . (16.21)

This means that the observer measuring A cannot decide from the probability distribution ob-
tained whether a measurement of B has been performed or not. So, no signal can be transferred
by measuring B.
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16.2 Bell’s inequalities

In classical physics, precise knowledge of the state of a system Σ determines the result of
every measurement performed on Σ. This fact is often formulated as the principle of realism:

The outcome of every measurement is predetermined by an objective feature of the
state of the system.

In quantum theory, a quantum state in general only allows for statistical predictions of mea-
surement results. Moreover, there are complementary observables, such as position and mo-
mentum or different components of angular momentum, which cannot simultaneously have
sharp values in any quantum state. If the principle of realism is maintained also for quantum
theory, indeterminacy and complementarity of quantum theory have to be interpreted in the
following way:

1. The stochastic features of quantum theory are due to incomplete knowledge of the “true”
state of a quantum system. In other words, a quantum state, in which the outcome of some
measurement is always uncertain, only gives incomplete information about the “true”
state of the system. In this sense, the quantum-mechanical description is incomplete,
even if complete information about the “true” state may be inaccessible.

2. The measurement of an observable disturbs the “true” state in such a way that the result
of a measurement of a complementary observable is uncertain.

In a famous article that appeared in 1935, Einstein, Podolsky, and Rosen sharpened the argu-
ment for the incompleteness of quantum theory by considering pairs of particles in an entan-
gled state.

Imagine two particles that are widely separated. Assume the system to be in an entangled
state such that the results of a measurement of an observable A for the two particles are strictly
correlated. In other words, the value a(2) for A measured at particle 2 strictly determines the
value a(1) for A measured at particle 1. If we adopt the locality principle of the previous sec-
tion, a measurement of A at particle 2 cannot influence the state of the well-separated particle
1. Assume furthermore that the same strict correlation also holds for another observable B
that does not commute with A. As an example we can take a Bell state (eq. (16.14)) and let A
and B correspond to linear polarization measurements of two oblique directions x and x′.

Now we measure the observable A on particle 1 and B on particle 2. Under the assumption
of locality, the A measurement does not disturb the B measurement, and the principle of
realism allows us to interpret the result of the B measurement as information about the real
state of particle 1. Repeating the A and B measurements many times, we can measure a joint
distribution function of the values of the incommensurable observables A and B for particle
1. Such a quantity is not defined in ordinary quantum theory, which, assuming locality and
realism, thus gives an incomplete description of the true state of particle 1. A complete theory
would be a theory with local realistic hidden parameters describing true states such that a
quantum state corresponds to a statistical ensemble of true states.

For a long time it was believed that such hidden parameter theories were empirically in-
distinguishable from ordinary quantum theory. Quite surprisingly, J. Bell in 1964 came out
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with his inequalities on correlations or measurement results, allowing one to test the hypoth-
esis of locality and realism experimentally. The experimental results obtained thereafter are
all in accordance with quantum theory and strongly disfavor or exclude local realistic hidden
parameter theories.

Consider again a well-separated two-particle system and three observables A, B, and C,
each of which can be measured on both particles and can assume only two values, ai, bi,
ci (i = 1, 2). Let the system be in an entangled state with strict correlations between the
measured values for the observables A, B, and C for the particles 1 and 2. For example, we
can take a system of two spin-1/2 particles in a Bell state (eq. (16.14)) and take the observables
A = a ·σ, B = b ·σ, C = c ·σ, which have eigenvalues ±1 and measure the spin component
in the direction of the unit vectors a, b, and c. Alternatively, we can consider a two-photon
system in a Bell state and the linear polarization variables σ(α), σ(β), and σ(γ), with

σ(θ) =
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
, (16.22)

which have eigenvalue +1 if the linear polarization points in the θ direction and −1 if it is
directed orthogonal to θ. Assuming local realism, the pair probabilities for particles 1 and 2,
w(ai, bi), are also probabilities for the joint distribution of values of A and B for particle 1.
Now by elementary probability theory

w(ai, bj) = w(ai, bj , ck) + w(ai, bj , ck̄) ≤ w(ai, ck) + w(bj , ck̄), (16.23)

where c1̄ = c2 and c2̄ = c1. Evaluating these probabilities for the observables σ(α), σ(β),
and σ(γ) for the Bell state

|Φ2〉 =
1√
2
(|x〉 ⊗ |x〉 + |y〉 ⊗ |y〉), (16.24)

we obtain

w(a1, b1) = 〈Φ2|12 [1 + σ(α)]12 [1 + σ(β)]|Φ2〉 = 1
4 [1 + cos(2(α − β))]

= 1
2 cos2(α − β) = w(a2, b2), (16.25)

w(a1, b2) = w(a2, b1) = 1
4 [1 − cos(2(α − β))] = 1

2 sin2(α − β).

The inequality eq. (16.23) implies that

w(a1, b1) ≤ w(a1, c1) + w(b1, c2), (16.26)

but, choosing a = 0, β = π/6, and γ = π/3, we obtain

w(a1, b1) = 3
8 , w(a1, c1) = w(b1, c2) = 1

8 , (16.27)

and the inequality eq. (16.26) is violated. This violation is confirmed by experiment.
This is a really spectacular result of “experimental philosophy”. The inequality (16.23) is

derived using only the postulates of locality and realism. Its violation means that both of these
intuitively natural properties cannot be true for quantum theory. If one insists on locality, then
the realistic interpretation of measurement results on correlated pairs as results on one of its
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members is not justified. It is not legitimate to assume that the result of a measurement on a
quantum system is predetermined by (however unknown) features of the “true state” of the
system. There is no way to consider the quantum state as an incomplete description of a true
state. The measured value in a quantum system is in general not predetermined but created by
the act of measurement.

Equation (16.23) is just one single example of a large family of Bell’s inequalities deriv-
able under the hypothesis of local realism. One frequently used inequality employs correla-
tions for four observables A, B, C, and D, which can have two values ±1. Under the assump-
tion of local realism, the correlation 〈ab〉 should be given by

〈ab〉 =
∫

dλ ρ(λ)a(λ)b(λ), (16.28)

where λ denotes the “real state” and ρ(λ) is a probability distribution with ρ(λ) ≥ 0 and∫
dλ ρ(λ) = 1. The quantity

S = 〈cb〉 + 〈cd〉 + 〈ab〉 − 〈ad〉
=

∫
dλ ρ(λ){c(λ)[b(λ) + d(λ)] + a(λ)[b(λ) − d(λ)]} (16.29)

obeys the inequality

|S| ≤ 2, (16.30)

because |a(λ)| = |b(λ)| = |c(λ)| = |d(λ)| = 1 and, hence, either b(λ) + d(λ) = 0 or
b(λ) − d(λ) = 0.

On the other hand, the quantum theory of the two-photon system described above gives

〈ab〉 = 〈Φ2|σ(α) ⊗ σ(β)|Φ2〉 = cos(2(α − β)) (16.31)

and, with α = 0, β = π/8, γ = π/4, and δ = 3π/8, we obtain

S = 2
√

2 > 2. (16.32)

Again, quantum theory predicts a violation of local realism in accordance with experimental
findings.

The inequalities of Bell type imply correlations and probabilities of measurement results.
More recently, Greenberger, Horn, and Zeilinger gave a first example of a system for which a
single measurement can distinguish between quantum theory and local realistic theories.

Consider the three-fold tensor product of a two-dimensional Hilbert space H2 with basis
|ϕ1〉, |ϕ2〉, and σ3|ϕ1,2〉 = ±|ϕ1,2〉. On H = H2 ⊗H2 ⊗H2 we define the observables

A1 = σ1 ⊗ σ2 ⊗ σ2, A2 = σ2 ⊗ σ1 ⊗ σ2, A3 = σ2 ⊗ σ2 ⊗ σ1. (16.33)

These three observables mutually commute with each other, for instance

A1A2 = A2A1 = σ3 ⊗ σ3 ⊗ 1, (16.34)
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and can be simultaneously diagonalized. One readily sees that

|Ψ〉 =
1√
2
(|ϕ1〉 ⊗ |ϕ1〉 ⊗ |ϕ1〉 − |ϕ2〉 ⊗ |ϕ2〉 ⊗ |ϕ2〉) (16.35)

is the only state in H with

A1|Ψ〉 = A2|Ψ〉 = A3|Ψ〉 = |Ψ〉. (16.36)

This implies that for the observable

B = σ1 ⊗ σ1 ⊗ σ1 (16.37)

we have

B|Ψ〉 = −|Ψ〉, (16.38)

because B = −A1A2A3.
According to a local realistic reasoning, in a true state the values s

(i)
1 and s

(i)
2 , i = 1, 2, 3,

for the observables σ1 and σ2 must be predetermined for each of the three particles. Altogether
there are eight combinations for the values of s

(i)
1 and s

(i)
2 for which the three variables

a1 = s
(1)
1 s

(2)
2 s

(3)
2 , a2 = s

(1)
2 s

(2)
1 s

(3)
2 , a3 = s

(1)
2 s

(2)
2 s

(3)
1 (16.39)

all have the value unity. We list the allowed combinations in Table 16.1. In all of these combi-
nations we have

b = s
(1)
1 s

(2)
1 s

(3)
1 = +1, (16.40)

just the opposite to the value obtained from quantum theory.

Table 16.1: Allowed combinations such that ai = 1

Particle 1 Particle 2 Particle 3

s
(1)
1 s

(1)
2 s

(2)
1 s

(2)
2 s

(3)
1 s

(3)
2

+1 +1 +1 +1 +1 +1
+1 +1 −1 −1 −1 −1
−1 −1 +1 +1 −1 −1
−1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1
−1 +1 +1 −1 −1 +1
−1 +1 −1 +1 +1 −1
+1 −1 +1 −1 +1 −1

The GHZ (Greenberger–Horn–Zeilinger) state |Ψ〉 of eq. (16.35) can in principle be con-
structed both for systems of three photons and for systems of three spin-1/2 particles. Mean-
while, other GHZ states with four particles have also been proposed. The actual preparation
of a GHZ state remains an experimental challenge.
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16.3 Quantum erasers and measurement without
interaction

In the well-known double-slit experiment, the interference pattern of particle detection prob-
abilities on the screen is produced by the interference of two amplitudes ψ1(x) and ψ2(x)
corresponding to the transition of the particles through slits 1 and 2:

w(x) ∼ 1
2 |ψ1(x) + ψ2(x)|2. (16.41)

Figure 16.1: Double-slit experiment and quantum eraser.

The interference pattern disappears if “which path” information (which determines
through which of the holes the particles actually passed) is available. A conceptually very
clear although not yet realized way to achieve this is to perform the double-slit experiment
with incoming excited atoms and to place micromasers in the vacuum state in front of each
of the holes. The micromasers are tuned such that an atom passing them becomes de-excited
with unit probability and is not deflected in any way by the micromaser. Then an atom will
leave a photon and “which path” information in one of the two cavities, and the interference
pattern on the screen will disappear. On the side of the screen, the total state of the atom and
the two micromasers will be given by

|Ψ〉 ∼ 1√
2
|1, 0〉ψ1(x) +

1√
2
|0, 1〉ψ2(x), (16.42)

and because of the orthogonality of the resonator states |1, 0〉 and |0, 1〉, we have indeed∥∥ |Ψ〉 ∥∥2 ∼ 1
2

[ |ψ1(x)|2 + |ψ2(x)|2 ]
, (16.43)

without interference. Note that it is not necessary to look up in which of the cavities the photon
is really to be found. For the vanishing of the interference pattern, it is sufficient that the
“which path” information is available in principle. By removing the separating wall between
the two cavities, the “which path” information can be destroyed and the interference pattern
reappears. This is the principle of the so-called quantum eraser.

After removing the separating wall the state is

|Ψ′〉 ∼ 1√
2

[ |1〉ψ1(x) + |1〉ψ2(x)
]
, (16.44)
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and ∥∥ |Ψ′〉 ∥∥2 ∼ 1
2 |ψ1(x) + ψ2(x)|2. (16.45)

The “which path” information can be erased when the atoms have already passed the double-
slit mask and are on their way to the screen.

One can even go one step further. Introducing the symmetrized and anti-symmetrized
states

|Φ±〉 =
1√
2
(|1, 0〉 ± |0, 1〉) and ψ±(x) =

1√
2
[ψ1(x) ± ψ2(x)], (16.46)

we can write the state |Ψ〉 of eq. (16.42) in the form

|Ψ〉 ∼ 1√
2

[ |Φ+〉ψ+(x) + |Φ−〉ψ−(x)
]
. (16.47)

Rather than determining in which cavity the photon is found, one can measure whether the
two cavities are in the state |Φ+〉 or |Φ−〉. After such a measurement, the distribution on the
screen will be

w±(x) ∼ 1
2 |ψ±|2 = 1

2 |ψ1(x) ± ψ2(x)|2. (16.48)

A measurement of |Φ+〉 or |Φ−〉 erases the “which path” information and, correspondingly,
w±(x) shows an interference pattern. The interference patterns w±(x) are shifted with respect
to each other such that

1
2 [w+(x) + w−(x)] ∼ 1

2

[ |ψ1(x)|2 + |ψ2(x)|2]. (16.49)

The sum shows no interference pattern. If an observer at the screen knows the result of the
|Φ±〉 measurement, he will observe the distributions w±(x). If he does not know the result,
he will observe the distribution of eq. (16.49) without interference. But even after measuring
this distribution, the interference can be recovered. If the observer has carefully registered the
order and position of the atoms impacting on the screen and if, in hindsight, he learns about
the outcomes of the |Φ±〉 measurements, he can perform a classification of the atoms hitting
the screen into a (+) class and a (−) class. Sampling the distributions of the classes separately,
he will rediscover interference.

Quantum erasers have been realized in various forms. In 2002, S. P. Walborn, M. O. Terra
Cunha, S. Pádua, and C. H. Monken (2002 Phys. Rev. A65, 033818) for the first time con-
structed a quantum eraser based on the double-slit experiment. It works with polarized pho-
tons.

In addition to a pair of orthogonal linear polarization states |x〉, |y〉, another oblique or-
thogonal pair

|x′〉 =
1√
2
(|x〉 + |y〉), |y′〉 =

1√
2
(|x〉 − |y〉),

|x〉 =
1√
2
(|x′〉 + |y′〉), |y〉 =

1√
2
(|x′〉 − |y′〉),

(16.50)
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of polarization states, as well as circular polarization states

|R〉 =
1√
2
(|x′〉 + i|y′〉), |L〉 =

1√
2
(|x′〉 − i|y′〉) (16.51)

are employed. The “which path” information is provided by two differently oriented λ/4 plates
immediately behind the holes, which are described by unitary operators U1 and U2 with

U1|x′〉 = |x′〉, U1|y′〉 = i|y′〉,
U2|x′〉 = i|x′〉, U2|y′〉 = |y′〉.

(16.52)

Hence,

U1|x〉 = |R〉, U1|y〉 = |L〉,
U2|x〉 = i|L〉, U2|y〉 = i|R〉.

(16.53)

An incident photon in the polarization state |x′〉 or |y′〉 emerges from the double-slit ap-
paratus in the state

|Ψx′〉 = |x′〉(ψ1 + iψ2) or |Ψy′〉 = |y′〉i(ψ1 − iψ2). (16.54)

These states carry no “which path” information and show complementary interference pat-
terns.

On the other hand, planar polarization states |x〉 or |y〉 emerge as

|Ψx〉 = |R〉ψ1 + i|L〉ψ2 or |Ψy〉 = |L〉ψ1 + i|R〉ψ2. (16.55)

Now the polarization state of the photon carries the “which path” information and there is no
interference pattern:∥∥ |Ψx〉

∥∥2 =
∥∥ |Ψy〉

∥∥2 ∼ |ψ1|2 + |ψ2|2. (16.56)

The “which path” information can be erased by placing polarization filters with equal orienta-
tion behind the λ/4 plates.

Figure 16.2: Double-slit experiment and quantum eraser with entangled pairs.
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A more elegant realization of an eraser employed by the authors mentioned above uses
an entangled photon pair in a Bell state (see fig. 16.2). One photon falls on the double-slit
instrument, and the other one is free for further measurement and manipulation. The Bell state

|Φ〉 =
1√
2
(|x〉 ⊗ |x〉 + |y〉 ⊗ |y〉) =

1√
2
(|x′〉 ⊗ |x′〉 + |y′〉 ⊗ |y′〉) (16.57)

is transformed into

|Ψ〉 =
1√
2
|x〉 ⊗ (|R〉ψ1 + i|L〉ψ2) +

1√
2
|y〉 ⊗ (|L〉ψ1 + i|R〉ψ2)

=
1√
2
|x′〉 ⊗ (|x′〉ψ1 + |x′〉iψ2) +

1√
2
|y′〉 ⊗ (|y′〉iψ1 + |y′〉ψ2)

=
1√
2
(|x′〉 ⊗ |x′〉 + i|y′〉|y′〉)ψ1 +

i√
2
(|x′〉 ⊗ |x′〉 − i|y′〉 ⊗ |y′〉)ψ2. (16.58)

The state |Ψ〉 gives no interference pattern on the screen because it carries “which path” infor-
mation. Measuring the xy polarization of the additional photon yields the states |Ψx〉 and |Ψy〉
of eq. (16.55), which still carry “which path” information, whereas measuring the x′y′ polar-
ization gives the states |Ψx′〉 and |Ψy′〉, for which the “which path” information is erased.
As above, this measurement can be delayed, or its results can be used later to recover the
interference pattern.

Measurement without interaction is another very surprising and interesting application
of “which path” information. Consider a Mach–Zehnder interferometer with two symmetric
beam splitters as depicted in fig. 16.3. Let the beam acquire a phase jump of π/2 on each
reflection and no phase jump on transmission.

� ��

�� �

� �

�

� �

��
1 dark

2 bright

Figure 16.3: Mach–Zehnder interferometer.

Then, by destructive interference, an incoming photon will never emerge at the “dark”
port 1 but always at the “bright” port 2. Now we block one of the paths by placing an absorber
with 100% efficiency in it. (In the original proposal, the absorber is a bomb that explodes
when it is hit by a photon!) The absorber now provides the “which path” information because
the blocked path cannot be used. With the absorber, 50% of the photons will emerge at each
of the ports 1 and 2.

Imagine now that an observer at the ports 1 and 2 does not know whether the absorber is
in place. With 50% probability no photon will arrive at port 1 or 2. In this case (and also from
the explosion!) the observer knows that the absorber was there and was hit by a photon. With
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50% probability the observer will see a photon at either port 1 or 2 and with 25% probability
each. If the photon arrives at the bright port 1, the observer cannot tell whether the absorber is
in place. However, if the photon arrives at the dark port 1, the observer knows that the absorber
was there, although he also knows that it was not hit by a photon. So, with 25% efficiency it
is possible to secure the presence of the absorber without hitting it with a single photon.

The detection efficiency can even be pushed arbitrarily close to 100% by the following
device (see fig. 16.4). Take a cavity with mirrors on both ends, which is divided into two
halves by an asymmetric beam splitter with high reflectivity. A photon oscillating back and
forth will meet the beam splitter at regular time intervals.

I II
···
···
··
···
···
··

Beam
splitter

�� ��

Figure 16.4: Detection without interaction.

Let

|ϕ1〉 =
(

1
0

)
and |ϕ2〉 =

(
0
1

)
be the states representing a photon in, respectively, the left-hand part I and right-hand part II
of the resonator. Let the photon be initially in part I. The beam splitter will be represented by
a unitary matrix U of the form

U =
(

cos ϕ i sin ϕ
i sin ϕ cos ϕ

)
. (16.59)

Now, evidently, the N th power of U will satisfy

UN

(
1
1

)
= eiNϕ

(
1
1

)
, UN

(
1

−1

)
= e−iNϕ

(
1

−1

)
, (16.60)

and

UN

(
1
0

)
=

(
cos(Nϕ)
i sin(Nϕ)

)
. (16.61)

This means that the probability of finding the photon in part I of the cavity after N interactions
with the beam splitter is given by

wI(N) = cos2(Nϕ). (16.62)

Choosing ϕ = π/2N , we have wI(N) = 0.
Now we place an absorber into part II, which absorbs a photon in part II with 100%

efficiency and on absorption gives a clear signal (for example, an explosion). Then the lack of
this signal corresponds to a measurement asserting that the photon is still in part I. After the
first interaction, the probability for this is

wI(1) = cos2 ϕ = cos2
( π

2N

)
, (16.63)
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and after N interactions with the beam splitter

wI(N) =
[
cos

( π

2N

)]2N

. (16.64)

Now

lim
N→∞

[
cos

( π

2N

)]2N

= 1.

Indeed,

ln
[
cos

( π

2N

)]2N

= 2N ln
[
cos

( π

2N

)]
= 2N ln

[
1 − π2

8N2
+ · · ·

]
=

π2

4N
+ O

(
1

N2

)
.

Hence, wI(N) can be pushed arbitrarily close to 1 as opposed to wI(N) = 0. This means that
from wI(N) 
= 0 we can tell with certainty that the absorber is in place and that we can detect
the absorber with arbitrarily high efficiency without hitting it with a single photon.

The mechanism to achieve limN→∞ wI(N) = 0 is known by the name of the quantum
Zeno effect. It is possible to suppress a quantum-mechanical transition by repeatedly mea-
suring whether it has occurred. The device just described can in principle be improved to
photograph an object without a photon hitting it or to take an X-ray picture with zero radiation
doses.

16.4 No cloning and quantum teleportation

In quantum theory, it is, at least in principle, possible to prepare any prescribed admissible
quantum state of a system Σ. On the other hand, the identification of an unknown state |ψ〉 of
Σ is subject to severe restrictions, because a measurement is always connected to a projection
of |ψ〉 onto some subspace and, hence, generically with a change of |ψ〉 such that |ψ〉 cannot
be completely reconstructed from the result of a measurement.

If the system is known to reside in one of the eigenstates of an observable

A =
∑

i

|ϕi〉ai〈ϕi|, ai 
= aj for i 
= j, (16.65)

then a measurement of A can identify this eigenstate. But in general, applying a measurement
of A to an unknown state |ψ〉 will identify a component of |ψ〉 in exactly one of the direc-
tions |ϕi〉, whereas all other possible information about |ψ〉 is lost after the measurement. If
and only if the state |ψ〉 can be produced repeatedly as many times as desirable, then, by an
appropriate sequence of measurements, |ψ〉 can be determined to arbitrary precision. Related
to this situation, quantum theory excludes the existence of a “state measurement apparatus” in
the same sense that measuring devices exist for position or momentum.
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To see this, let us briefly enter into the formal quantum-theoretical description of the mea-
surement of an observable A like eq. (16.65). The Hilbert space of the system “measuring
apparatus plus measured system Σ” is a tensor product

H = HAP ⊗HΣ. (16.66)

Let |Φ〉 ∈ HAP be the zero state of the measuring apparatus. For an ideal measurement of the
observable A, the interaction with the measuring apparatus is described by a unitary operator

U : H → H, (16.67)

such that

U(|Φ〉 ⊗ |ϕi〉) = |Φai
〉 ⊗ |ϕi〉 (16.68)

with

〈Φai
|Φaj

〉 = 0 for ai 
= aj . (16.69)

An initial pure product state

|Ψ〉 = |Φ〉 ⊗
∑

i

ci|ϕi〉 (16.70)

will go over into an entangled state

|Ψ′〉 = U |Ψ〉 =
∑

i

ci|Φai
〉 ⊗ |ϕi〉, (16.71)

and after reduction to HAP, the density matrix will be

ρ = Tr2|Ψ′〉〈Ψ′| =
∑

i

|Φai
〉|ci|2〈Φai

|, (16.72)

which just contains the standard quantum-theoretical probabilities wi = |ci|2 to measure the
value ai.

A “state measurement apparatus” would have to correspond to a unitary operator U with

U |Ψϕ〉 = U(|Φ〉 ⊗ |ϕ〉) = |Φϕ〉 ⊗ |ϕ〉 (16.73)

for all |ϕ〉 ∈ HΣ and

〈Φϕ′ |Φϕ〉 = 0 for |ϕ〉 
= |ϕ′〉. (16.74)

Such a unitary operator cannot exist, because for 〈ϕ|ϕ′〉 
= 0 we would have

〈Ψϕ|Ψϕ′〉 = 〈ϕ|ϕ′〉 
= 0 but 〈UΨϕ|UΨϕ′〉 = 0. (16.75)

The so-called no-cloning theorem imposes another serious limitation on manipulating quan-
tum states.
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Theorem 16.1 (no-cloning theorem). If a state |ϕ〉 ∈ HΣ can be prepared, it can also
be prepared many times. It is, however, impossible in principle to build a universal “state
doubling” or cloning machine that transforms every state |ϕ〉 ∈ HΣ into a doubled state
|ϕ〉 ⊗ |ϕ〉 ∈ HΣ ⊗HΣ.

Proof: The proof of this important theorem is simple. A cloning machine would have to cor-
respond to a linear operator V with

V (|Φ〉 ⊗ |ϕ〉) = |Φ′〉 ⊗ |ϕ〉 ⊗ |ϕ〉 for all |ϕ〉 ∈ H. (16.76)

Such a linear operator is impossible because it would have to fulfill, on the one hand,

V
(|Φ〉 ⊗ (|ϕ1〉 + |ϕ2〉)

)
= V (|Φ〉 ⊗ |ϕ1〉) + V (|Φ〉 ⊗ |ϕ2〉)
= |Φ′〉 ⊗ |ϕ1〉 ⊗ |ϕ1〉 + |Φ′′〉 ⊗ |ϕ2〉 ⊗ |ϕ2〉, (16.77)

and, on the other hand,

V
(|Φ〉 ⊗ (|ϕ1〉 + |ϕ2〉)

)
= |Φ′′′〉 ⊗ (|ϕ1〉 + |ϕ2〉) ⊗ (|ϕ1〉 + |ϕ2〉). (16.78)

Obviously, eqs. (16.77) and (16.78) cannot be identical for arbitrary |ϕ1〉, |ϕ2〉 ∈ HΣ. There
are variants and generalizations of the no-cloning theorem to mixed states. �

The impossibility of cloning is very deeply rooted in the foundations of quantum theory. In
fact, if an unknown polarization state of a photon could be cloned, then the cloning could be
repeated many times and the state could be converted into a classical light ray whose Stokes
parameters, as described in chapter 12, could be measured, thus determining the unknown
polarization state completely.

The no-cloning theorem only excludes a universal cloning machine cloning any unidenti-
fied state. States that can be identified by a single measurement can be cloned. If, for instance,
the state is known to be a member of an orthonormal system, a measurement of the observable
A in eq. (16.65) will identify it, and subsequently it can be prepared as many times as desired.
Indeed, for an orthonormal system {|ϕi〉}i∈I , there exist unitary operators

U : |ψ〉 ⊗ |ϕi〉 → |ϕi〉 ⊗ |ϕi〉. (16.79)

In view of the limitations described above, it may be surprising but satisfying to hear
that an unknown state |ϕ〉 ∈ HΣ can at least be transported from one place q1 to another
place q2 without analyzing it (at the expense of annihilating it at q1). The mechanism, which
makes essential use of entanglement, goes by the name of quantum teleportation. Let us first
describe it for a two-dimensional Hilbert space H2, where |ϕ1〉 and |ϕ2〉 are an orthonormal
basis of H2.
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First, one of the four Bell states in H2 ⊗H2,

|Φ1〉 =
1√
2
(|ϕ1〉 ⊗ |ϕ2〉 − |ϕ2〉 ⊗ |ϕ1〉),

|Φ2〉 =
1√
2
(|ϕ1〉 ⊗ |ϕ2〉 + |ϕ2〉 ⊗ |ϕ1〉),

|Φ3〉 =
1√
2
(|ϕ1〉 ⊗ |ϕ1〉 − |ϕ2〉 ⊗ |ϕ2〉),

|Φ4〉 =
1√
2
(|ϕ1〉 ⊗ |ϕ1〉 + |ϕ2〉 ⊗ |ϕ2〉),

(16.80)

is produced such that one member of the entangled pair remains at q1 and the other one is sent
to q2. For definiteness, we take the state |Φ4〉. Next we go over to the state

|Ψ〉 = |ϕ〉 ⊗ |Φ4〉 =
1√
2
(|ϕ〉 ⊗ |ϕ1〉 ⊗ |ϕ1〉 + |ϕ〉 ⊗ |ϕ2〉 ⊗ |ϕ2〉) (16.81)

∈ H2 ⊗H2 ⊗H2,

where

|ϕ〉 = c1|ϕ1〉 + c2|ϕ2〉 (16.82)

is the unknown state to be teleported and assumed to reside at the place q1. Expanding the
state |Ψ〉 in a Bell state basis with respect to the first two factors of the tensor product, we see
that |Ψ〉 is also given by

|Ψ〉 = 1
2{|Φ1〉 ⊗ (−c2|ϕ1〉 + c1|ϕ2〉) + |Φ2〉 ⊗ (c2|ϕ1〉 + c1|ϕ2〉)
+ |Φ3〉 ⊗ (c1|ϕ1〉 − c2|ϕ2〉) + |Φ4〉 ⊗ (c1|ϕ1〉 + c2|ϕ2〉)}. (16.83)

Now the observer at q1 performs a measurement with respect to the Bell state basis in the first
two factors. Depending on the outcome of this measurement, the state |ψi〉 at q2 will be the
following:

for |Φ1〉: |ψ1〉 = −c2|ϕ1〉 + c1|ϕ2〉 = U1|ϕ〉,
for |Φ2〉: |ψ2〉 = c2|ϕ1〉 + c1|ϕ2〉 = U2|ϕ〉,
for |Φ3〉: |ψ3〉 = c1|ϕ1〉 − c2|ϕ2〉 = U3|ϕ〉,
for |Φ4〉: |ψ4〉 = c1|ϕ1〉 + c2|ϕ2〉 = U4|ϕ〉 = |ϕ〉.

(16.84)

The states |ψi〉 (i = 1, . . . , 4) differ from the unknown state |ϕ〉 to be teleported by unitary
transformations Ui (i = 1, . . . , 4), which are independent of |ϕ〉. Now the observer at q1

informs the observer at q2 about the outcome i = 1, . . . , 4 of his Bell basis measurement by a
normal classical communication channel and asks him to apply a unitary transformation U−1

i

to the state |ψi〉 present at q2. As a result, the state |ϕ〉 will be present at q2, but no longer
at q1.

Notice that the states |ψi〉 (i = 1, . . . , 4) are not orthogonal. If they were orthogonal, they
could be distinguished by a single measurement, the classical information channel would be
superfluous, and the apparatus could be used to transmit information faster than light.
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For state spaces of arbitrary dimension N , this teleportation scheme can be generalized
in the following way. Let (|ϕn〉)n=1,...,N be a basis of the Hilbert space H. The orthonormal
system

|Φm,n〉 =
1√
N

N∑
j=1

ζjn|ϕj〉 ⊗ |ϕj+m〉 (16.85)

with

ζ = e2πi/N

generalizes the Bell state basis to an orthonormal basis of HN ⊗HN . The sum j + m is to be
understood modulo m. The states |Φmn〉 can be written in the form

|Φmn〉 = (1⊗ Umn)|Φ00〉, (16.86)

where the unitary operator Umn with

Umn|ϕj〉 = ζjn|ϕj+m〉 (16.87)

is the product

Umn = SmPn (16.88)

of a phase operator

Pn|ϕj〉 = ζjn|ϕj〉 (16.89)

and a shift operator

Sm|ϕj〉 = |ϕj+m〉. (16.90)

Teleportation is now performed by projecting

|Ψ〉 = |ϕ〉 ⊗ |Φ0,0〉 =
N∑

k=1

ck|ϕk〉 ⊗ |Φ0,0〉 (16.91)

∈ HN ⊗HN ⊗HN

onto |Φm,n〉 in the first two factors of the three-fold tensor product. Then the state left at q2

will be

|ψm,n〉 =
∑

k

ckζ−kn|ϕk+m〉 = Um,−n|ϕ〉, (16.92)

and |ϕ〉 can be recovered at q2 by on demand undoing the unitary transformation Um,−n.
Again, the states |ψm,n〉 are not orthogonal.
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16.5 Quantum cryptography

In quantum theory, a measurement of an observable will in general change the state of the
system. More precisely, if the system is known to reside in an eigenstate of an observable A,
the subsequent measurement of a complementary observable B will change the state. The fact
that a measurement will in general leave a trace can be used to establish communication chan-
nels for which an eavesdropper can be recognized with arbitrary efficiency. Such channels are
ideal for handing over information like the key for data encryption for future communication
which is itself meaningless but must be transmitted such that eavesdropping can be excluded.

An emitter E measures at random one of several complementary observables A, B, C, . . .
of a quantum system Σ, thus preparing the system in an eigenstate of the observable just
measured, and subsequently sends the system to a receiver R. Just for definiteness, we assume
that the emitter sends photons to R and that the observables are planar polarization observables
along or orthogonal to one of several mutually oblique directions.

The emitter does not tell which observable he measured each time and what the results
of the measurements were. The receiver performs measurements with the photons arriving at
him whereby he also chooses at random each time one member of the same set of comple-
mentary observables. After the transmission of a large number of photons, E and R exchange
information about which observable they measured for each photon. This may be done by a
public insecure channel. If they happened to measure the same observable, their results, which
they still keep secret, are guaranteed to agree unless some eavesdropper or any other distur-
bance has intervened. To exclude such an unwelcome incident, they use part of the photons
for which they measured the same observable as a control by comparing the results of their
measurements, possibly even in public. If there are no discrepancies for a sufficiently large
number of cases, they can be sure that no disturbance has occurred, and they can use the re-
sults from the other photons for which they measured the same observable to fix the key they
wanted to exchange.

If there are discrepancies, they must suspect that an eavesdropper has performed mea-
surements on the exchanged photons. Not knowing at the time of his measurement which
observable the emitter had chosen, the eavesdropper will inevitably have taken the wrong ob-
servable many times and will have changed the photon states. In this case, E and R reject their
data and try to communicate again.

The communication system can be improved by taking photon pairs in a Bell state rather
than single photons. The emitter produces Bell states, for instance,

|Φ2〉 =
1√
2
(|x〉|x〉 + |y〉|y〉), (16.93)

keeps one of the photons, and sends the other one to the receiver. Now, at least in principle,
the photons can be stored and the measurements can be performed when they need a common
key. This will reduce problems with the safe storage of a secret common key.

The transmission of information and the check for eavesdropping can proceed as de-
scribed. If E and R measure the same observable, they are guaranteed to find the same result
unless some disturbance or intervention has occurred.

The use of photon pairs in a Bell state opens up an additional possibility to secure oneself
against eavesdropping. The complementary observables may be chosen such that a maximal
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violation of a Bell-type inequality results. Now E and R may use the photon pairs for which
they measured different observables to check whether the violation of the inequality is still
maximal. The intervention of an eavesdropper will be detectable from deviations from maxi-
mal violation.

As an example, let us consider the Bell inequality

w(a1, b1) ≤ w(a1, c1) + w(b1, c2), (16.94)

derived and explained in section 16.2. For photon pairs in a Bell state |Φ2〉 we found

w(a1, b1) = 1
2 cos2(α − β) and w(a1, b2) = 1

2 sin2(α − β). (16.95)

The inequality is maximally violated for α = 0, β = π/6, and γ = π/3:

T = w(a1, b1) − w(a1, c1) − w(b1, c2) = 1
8 . (16.96)

If an eavesdropper has performed a measurement of any polarization observable X at one of
the photons in the Bell state, the state will subsequently be given by the density matrix:

ρ = 1
2 |x〉 ⊗ |x〉〈x| ⊗ 〈x| + 1

2 |y〉 ⊗ |y〉〈y| ⊗ 〈y|. (16.97)

From this we readily obtain the new pair probabilities

wX(a1, b1) = 1
2 (cos2 α cos2 β + sin2 α sin2 β),

wX(a1, b2) = 1
2 (cos2 α sin2 β + sin2 α cos2 β),

(16.98)

with

wX(a1, b1) + wX(a1, b2) = 1
2 , (16.99)

as necessary. With α = 0, β = π/6, and γ = π/3 we have

TX = wX(a1, b1) − wX(a1, c1) − wX(b1, c2) = 3
8 − 1

8 − 5
16 = − 1

16 . (16.100)

Bell’s inequality is not violated any more. So, even if the eavesdropper does not intervene each
time, his activity will be noticed by a reduction of the value of T below 1/8.

In fact, the interactionless detection mechanism described in the previous section can be
interpreted such that the absorber in the right-hand part of the cavity is a measuring instrument
detecting the presence of a photon there. Even an unsuccessful measurement leaves a trace
betraying the existence of the measurement apparatus.

16.6 Quantum computation

From a bird’s eye perspective, a classical computer is a large collection of N classical two-
state systems, called bits. Denoting the state of each bit by 0 or 1 ∈ Z2, the total state of a
computer, which also includes program and data, is given by an N -tuple:

(x) = (x1, . . . , xn) ∈ Z
N
2 . (16.101)
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With the addition,

0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, (16.102)

and the multiplication,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1, (16.103)

Z2 is a field and Z
N an N -dimensional vector space over Z2 with 2N different vectors. Some-

times it is advantageous to identify (x) with the integer

nx =
N−1∑
i=0

xN−1−i2i, 0 ≤ nx < 2N , (16.104)

and to label the state by the number nx : (x) = nx.
Computation consists in repeated application of Boolean functions,

f : Z
N
2 → Z

N
2 , (x) → (f(x)) = (f1(x), . . . , fN (x)), (16.105)

to the state (x). The component functions fi are Boolean functions,

fi : Z
N
2 → Z2, (16.106)

with values in Z2, to which we can restrict ourselves for the following discussion.
There are exactly four Z2-valued Boolean functions of one argument, namely the constant

functions with values 0 and 1, the identity function and the negation function:

NOT(x) = ¬x = x + 1. (16.107)

There are 24 = 16 Boolean functions of two arguments, for instance,

AND(x, y) = x ∧ y = xy,

OR(x, y) = x ∨ y = x + y + xy,

NAND(x, y) = ¬(x ∧ y) = xy + 1, (16.108)

NOR(x, y) = ¬(x ∨ y) = (x + 1)(y + 1),
XOR(x, y) = x ∨ y ∧ ¬(x ∧ y) = x + y.

There are 2n
Z2-valued Boolean functions of n arguments. Every Z2-valued Boolean function

can be constructed from the basic functions ∧, ∨, and ¬, for example:

f(x, y) = f00 ∧ ¬x ∧ ¬y ∨ f01 ∧ ¬x ∧ y ∨ f10 ∧ x ∧ ¬y ∨ f11 ∧ x ∧ y, (16.109)

from which the generalization to an arbitrary number of arguments is immediate.
Because of the identity

x ∨ y = ¬(¬x ∧ ¬y), (16.110)
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the set of basic functions can be reduced to two functions ∧ and ¬. It can even be reduced to
the single function NAND, because

¬x = NAND(x, x),
x ∧ y = ¬NAND(x, y) = NAND(NAND(x, y), NAND(x, y)). (16.111)

We have mentioned these simple facts of Boolean algebra just in order to contrast them
to the more complicated quantum computation. Quantum computers will eventually arise if
the miniaturization of the computer elements is pushed to its extreme. The fundamental unit
of a quantum computer is a quantum bit or qubit, a quantum system with a two-dimensional
Hilbert space H2. Let |0〉 and |1〉 be an orthonormal basis of H2. The quantum state space of
a qubit consists of a continuous infinity of states, which are given by Hilbert space vectors

|ϕ〉 = c0|0〉 + c1|1〉 
= 0, c1, c2 ∈ C, (16.112)

such that for α 
= 0, |ϕ〉 and α|ϕ〉 label the same quantum state. In this way, the set of quantum
states of a qubit turns out to be isomorphic to the two-sphere S2. A quantum computer is a
large arrangement of N quantum bits and the total set of states of the quantum computer is
described by the 2N -dimensional Hilbert space:

H⊗N
2 = H2 ⊗ · · · ⊗ H2 (N factors). (16.113)

An orthonormal basis of H⊗N
2 is given by the vectors

|x〉 = |x1, . . . , xN 〉 = |x1〉 ⊗ · · · ⊗ |xN 〉, xi ∈ Z2. (16.114)

The states associated to the basis vectors are called Boolean quantum states.
Computation is a quantum-dynamical process that consists of repeated application of uni-

tary transformations:

U : H⊗N
2 → H⊗N

2 . (16.115)

A unitary transformation is called “Boolean” if it transforms Boolean quantum states into
Boolean quantum states.

Just as in the classical case, it is desirable to identify a set of generating transformations
from which all unitary transformations can be obtained. Thus U is called a 1-bit transformation
if it acts on only one factor in the tensor product H⊗N

2 , and an n-bit transformation if it acts
on (at most) n factor bits. Using elementary matrix theory, one can show that every unitary
transformation of H⊗N

2 can be generated by 1- and 2-bit transformations.
The 1-bit transformations are of the simple form

U = 1⊗ · · · ⊗ 1⊗ V ⊗ 1⊗ · · · ⊗ 1, (16.116)

where V is a unitary 2 × 2 matrix. Boolean 1-bit transformations are given by the identity
V = 1 and by

V = X =
(

0 1
1 0

)
. (16.117)
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Here, X describes quantum negation. In general, 1-bit transformations are not Boolean. Par-
ticularly important is the Hadamard transformation:

H|0〉 =
1√
2
(|0〉 + |1〉), H|1〉 =

1√
2
(|0〉 − |1〉), (16.118)

H =
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
.

Another important 1-bit transformation is the phase transformation:

Z =
(

1 0
0 −1

)
. (16.119)

The most important 2-bit transformation is the checked not transformation UCN, defined
by

UCN|y, x〉 = |y, x+y〉 (16.120)

or

UCN|0, 0〉 = |0, 0〉, UCN|0, 1〉 = |0, 1〉,
UCN|1, 0〉 = |1, 1〉, UCN|1, 1〉 = |1, 0〉.

Depending on the value of the first “control” bit, the second bit is left intact or negated. UCN is
a Boolean transformation. It can be shown that the special 2-bit transformations UCN together
with the total set of 1-bit transformations already generate all unitary transformations of H⊗N

2 .
So, for the realization of quantum circuits, one only has to worry about 1-bit transformations
and UCN.

For example, the Bell states are obtained by applying C = UCN(H ⊗1) to the basis states
|x, y〉:

C|0, 0〉 = UCN
1√
2
(|0, 0〉 + |1, 0〉) =

1√
2
(|0, 0〉 + |1, 1〉),

C|0, 1〉 = UCN
1√
2
(|0, 1〉 + |1, 1〉) =

1√
2
(|0, 1〉 + |1, 0〉),

C|1, 0〉 = UCN
1√
2
(|0, 0〉 − |1, 0〉) =

1√
2
(|0, 0〉 − |1, 1〉),

C|1, 1〉 = UCN
1√
2
(|0, 1〉 − |1, 1〉) =

1√
2
(|0, 1〉 − |1, 0〉).

(16.121)

The four Bell states can be transformed into each other by applying to this first factor a nega-
tion and/or phase operator only to their first factor. This is the essence of dense quantum cod-
ing. Two bits of classical information can be transmitted by manipulating only one quantum
bit.

For every n-bit transformation

V : H⊗n
2 → H⊗n

2 , (16.122)
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one can define a checked version VC : H⊗(n+1)
2 → H⊗(n+1)

2 by

VC|y; x1, . . . , xn〉 =

{|y; x1, . . . , xn〉, for y = 0,

|y〉 ⊗ V |x1, . . . , xn〉, for y = 1.
(16.123)

In this sense, UCN is just the checked version of the negation transformation X .
Classical Boolean functions f : Z

N
2 → Z2 are never invertible for N > 1. Hence, it is

not possible to associate to them unitary transformations Vf : H⊗n
2 → H⊗n

2 in an immediate
way. This can, however, be achieved by means of the Toffoli construction. Let f : Z

n
2 → Z

m
2

be a classical Boolean function. Then

Uf : H⊗(n+m)
2 → H⊗(n+m)

2

is defined by

Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y + f(x)〉, (16.124)

for

|x〉 ∈ H⊗n
2 , |y〉, |f(x)〉 ∈ H⊗m

2 .

Here Uf is unitary and Boolean. This construction guarantees that a quantum computer, re-
stricted to Boolean states, can simulate every classical computer. Being members of an or-
thonormal set, Boolean states can be measured and cloned just like classical states.

The real power of quantum computing reveals itself only if non-Boolean states and oper-
ators are employed. To see this, let us start with the state

|ψ〉 =
1

2N/2

∑
x∈Z

N
2

|x〉 ∈ H⊗N
2 , (16.125)

which is the starting point for many quantum computations. The state |ψ〉 is easily prepared
by applying the Hadamard operator to each factor of |0〉 = |0〉 ⊗ · · · ⊗ |0〉 (n factors):

|ψ〉 =
1

2N/2

∑
x

|x〉 = H⊗N |0〉 = H|0〉 ⊗ · · · ⊗ H|0〉. (16.126)

The state |ψ〉 is not Boolean but separable. Applying Uf of eq. (16.124) for m = 1 to |ψ〉 ⊗
|0〉 ∈ H⊗(N+1)

2 gives

Uf |ψ〉 ⊗ |0〉 =
1

2N/2

∑
x

|x〉 ⊗ |f(x)〉. (16.127)

This result is remarkable, because it shows that by one application of Uf the function f has
been simultaneously evaluated for all values of x. This feature of quantum parallelism is the
essence of the power of quantum computation.

Quantum parallelism, of course, has its price. The state Uf |ψ〉 ⊗ |0〉, the result of the
computation, is, in general, not Boolean and can be neither copied nor completely read off
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by a single measurement. One would think of repeating the calculation and the measurement
of the result many times, but this would amount to giving away the advantage of quantum
parallelism.

The art of quantum computation consists in steering the computation and in performing
the final measurement such that the result gives as much useful information as possible. A
single measurement can identify a component of the measured state in the direction of a given
subspace. This may be sufficient to answer questions about several interesting global features
of the result. Also, by choosing the measured observable appropriately, the largest component
is found with the highest probability.

Using quantum parallelism, Fourier transformation can be performed faster than with any
known classical algorithm. Let f(n) = fn be a complex-valued function defined for integer
0 ≤ n < 2N . The Fourier transform f̃n is defined by

f̃n =
1

2N/2

2N−1∑
m=0

ζmnfm with ζ = e2πi/2N

. (16.128)

The inverse transformation is given by

fn =
1

2N/2

∑
m

ζ−mnf̃m. (16.129)

Even for the so-called fast Fourier transform algorithm, the computation time increases ex-
ponentially with N . To describe the quantum algorithm, we represent the basis states |x〉 for
x ∈ Z

N
2 by non-negative integer numbers as described above:

|x〉 = |nx〉 = |n〉. (16.130)

Fourier transformation is performed by the unitary operator

F : H⊗N
2 → H⊗N

2 with F |n〉 =
1

2N/2

2N−1∑
m=0

ζmn|m〉. (16.131)

Indeed,

F

(∑
n

fn|n〉
)

=
1

2N/2

∑
m,n

ζmnfn|m〉 =
∑

n

f̃n|n〉. (16.132)

The calculation time grows polynomially with N , in fact only a bit faster than N .
If fn = fn+k, this periodicity reflects itself in a concentration of f̃n at positions n = kr,

which can be detected with high efficiency by a suitable quantum measurement.
Fast period determination by quantum computation is the core of Shor’s quantum algo-

rithms for factorizing large numbers M into prime factors or for finding the discrete logarithm
x such that cx = d mod p. For all known classical algorithms for these problems, the compu-
tation time grows exponentially with the size (i.e. the number of digits) of the numbers, but
for Shor’s quantum algorithms the growth is only polynomial.
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This is also of extreme practical importance, since the security of so-called public key
encryption schemes relies on the intractability of such problems. Let us briefly describe the
essential idea of Shor’s factorization algorithm for large M . Take some number a and deter-
mine n0 
= 0 such that

an0 − 1 ≡ 0 mod M. (16.133)

This is quickly done with a quantum computation of the period of the function

f(n) = fn = an. (16.134)

If n0 turns out to be even, n0 = 2m0, then

(a2m0 − 1) = (am0 − 1)(am0 + 1) ≡ 0 mod M. (16.135)

Hence, at least one of the factors (am0 − 1)(am0 + 1) will have a common divisor d with Mq,
which can be quickly determined with the classical Euclidean algorithm. If d < M , a factor
of M has been found. If d = M or n0 is odd, one tries a different number a. The search for
a suitable a can be shown to lead to a positive result after a few trials with high probability,
unless M is the power of a prime number: M = pr. This case can be separately excluded with
a fast classical algorithm.

Another important quantum algorithm of very promising prospects is a quantum search
algorithm faster than any known classical search algorithm. The searching time for one item
among n items is only O(

√
n), whereas it is O(n) for classical search algorithms.

Quantum informatics and quantum computing are new fields whose quick development
promises many surprises. On the theoretical side, all of informatics has to be reconsidered
under the aspect of quantum theory. Much work has gone into the theoretical analysis of
quantum channels for information transfer. A key feature is the investigation of the role of
entanglement as a resource of quantum information theory. Even a fully satisfactory measure
for entanglement in mixed states is still lacking. The comprehensive monograph of Nielsen
and Chuang gives a very good overview of the field of quantum informatics.

A lot of progress has been achieved recently in devising quantum algorithms for error cor-
recting and repair. Self-correction of errors is indispensable already in classical computing.
Quantum states are even more vulnerable than classical two-state systems. In particular, en-
tanglement, which is so vital for quantum computation, has a tendency quickly to get lost by
“decoherence” as the effect of a small interaction with the environment of a system. For some
time, it was widely believed that the problems related to decoherence were insurmountable.
The advent of quantum correction algorithms was very encouraging in this respect.

On the experimental side, much work is in progress on the implementation of various
components of future quantum computers. Here we only list some of the strategies being
followed:

• Perhaps most advanced are linear ion traps in which several two-state ions are confined
and are manipulated by letting them interact with laser light. For the realization of a two
qubit gate like the controlled NOT gate, two ions have to be brought into contact such
that their interaction depends on their states. Arrangements with a small number of qubits
have been realized in this way.
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• Atoms can also be confined in a regular standing laser light field, which, as described
in section 15.8, exerts a force on them. Such a standing wave field may act as a regular
lattice with atoms sitting at various lattice points. Computing may consist in changing
the excitation states and/or the positions of atoms on this lattice.

• Nanostructures on the surface of a crystal on which individual atoms can be moved and
manipulated provide another promising possibility.

• Also electromagnetic fields in cavities may serve as arrangements of qubits.

• Nuclear magnetic resonance can address spin variables in a solid or liquid material by
microwaves. In order to obtain a signal of sufficient size, a qubit has to be represented by
an assembly of several spins. In this sense, one might dispute whether nuclear magnetic
resonance really provides an implementation of quantum computing in the strict sense.

• Quantum dots are point-like defects in semiconductors, which can be individually excited
and de-excited. There are many promising techniques to manufacture architectures of
quantum dots. The main problem will be to control their interactions with each other and
with the environment.

So far, only small numbers of quantum bits can be controlled. A quantum computer should
contain at least about 100,000 of them. This is still a challenge for the more remote future.
The more modest aim of building a quantum simulator for several quantum systems of interest
containing a few dozen qubits is still demanding but may be reached sooner.
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Röntgen, W.C. 13
Rotating phase approximation 87, 291
Rydberg states 308

s-phonon Jaynes–Cummings model 316
Sagnac interferometer 285
Scalar potential 17
Scalar wave equation 111
Schlieren method 195
Schrödinger picture 249
Schrödinger cat states 313
Second fundamental form 156
Secondary maxima 191
Seidel’s theory of aberrations 140
Self-focussing 96
Shear contraction 50
Shear modulus 49
Shor’s quantum algorithms 348
Short-wave approximation 108
SI-system 16
Side maxima 191
σ matrices 239
Signal wave 89
Signal, analytical 214
Sine–Gordon equation 88
Single-mode fibers 103
Skin effect 23
Snell’s law of refraction 70, 114
Snell, Willebrord 2
Solitary waves 88
Sommerfeld, Arnold 13
Speckle effect 236
Speckle pattern,objective and subjective 236
Spherical aberration 141
Spontaneous emission 305
Squeezed states 255
Squeezing operator 252
Standard ordering 260
Star product 261



Index 361

Stark effect, dynamical 303
State measurement apparatus, impossibility of

337
Stationary stochastic process 218
Step profile fibers 101
Stochastic process 217
Stokes line 90
Stokes parameters 240
Stress tensor, elastic 49
Stress tensor, Maxwell’s 32
Strong oscillator limit 276
Structure function 234
Sub-Poissonian light 287
Super-Poissonian light 287
Susceptibilities 32

electric 35
magnetic 35

Symbol 143, 164, 200, 264
Symbol calculus 202
Symplectic basis 133
Symplectic isomorphisms 132
Symplectic manifolds 125, 161
Symplectic subspaces 132
Symplectic transformations 132, 161
Symplectic vector spaces 132

Telegraph equation 22
Telescope 2, 189
Telescopic mapping 135
Tetragonal 57
Thermal light 283
Thermal states 267
Thomas–Kuhn sum rule 39
Three-photon phenomena 89
Three-wave interaction 87, 89
Time development operator 290
Toepler, A. 195
Toffoli construction 347
Tomographic reconstruction 277
Townes, C.H. 13
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